WAYS FOR IMPROVEMENT THE OSTEOPLASTIC MATERIALS FOR DENTISTRY. Review
Article PDF (Українська)

Keywords

dentistry, bone substitute materials, osteoplasty, improvement

Abstract views: 21
PDF Downloads: 8

How to Cite

Tsuperyak, S., & Mochalov, I. (2022). WAYS FOR IMPROVEMENT THE OSTEOPLASTIC MATERIALS FOR DENTISTRY. Review. Medical Science of Ukraine (MSU), 18(4), 94-105. https://doi.org/10.32345/2664-4738.4.2022.14

Abstract

Relevance. Bone-graft materials are widely used in health care and dentistry in particular. The use of osteoplasty techniques in the oral cavity has an increased risk of contamination of the operating field with opportunistic and pathogenic microflora. A number of improvements in such materials have the potential to be used in the treatment of dental diseases.

Objective: to analyze current publications devoted to the improvement of bone gratf materials that are used in health care and can be used in dentistry.

Methods. An analysis of data obtained during an information search in the online databases "PubMed", "SciELO", "Medcape" and "Science of Ukraine: access to knowledge" was carried out using the keywords "osteoplasty", "bone substitute materials", " bone defects".

Results: Despite the predominance in clinical practice of the use of osteoplastic materials of animal origin, the development and improvement of artificial materials looks promising. Such directions can be the improvement of composite materials based on hydrophilic gels which are able to be resorbed in the human body. Modification of ceramic materials and biological glass, improvement of their osteoconductive properties. Inclusion of antibiotics and antiseptics to osteoplastic materials. Inclusion of natural and recombinant biological growth factors in the composition of bone substitute materials. Transformation of osteoplastic material into a system of controlled long-term emission of antibiotics, antiseptics and biological growth factors.

Conclusions: Modern osteoplastic materials used in dentistry are mainly high-tech medical products that continue to be improved. The creation of artificial and composite materials with additional antiseptic, antibacterial, osteoinductive and biological properties opens the way to improving the methods of dental treatment and osteoplasty for the needs of dentistry.

https://doi.org/10.32345/2664-4738.4.2022.14
Article PDF (Українська)

References

Nisyrios T, Karygianni L, Fretwurst T, Nelson K, Hellwig E, Schmelzeisen R, Al-Ahmad A. High Potential of Bacterial Adhesion on Block Bone Graft Materials. Materials (Basel). 2020 May 1;13(9):2102. DOI: 10.3390/ma13092102.

View at:

Publisher Site: https://www.mdpi.com/1996-1944/13/9/2102

PubMed: https://pubmed.ncbi.nlm.nih.gov/32370084/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254222/

Kostenko Y, Mochalov I, Kaminsky R, Nakashidze G, Bun Y, Goncharuk-Khomyn M. [Application of synthetic osteoplastic material EASYGRAFT® in maxilla subantral augmentation (sinus-lift)]. Georgian Med News. 2018;(285):32-36. [In Russian]. PMID: 30702066.

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/30702066/

Emanuel N, Machtei EE, Reichart M, Shapira L. D-PLEX500: a local biodegradable prolonged release doxycycline-formulated bone graft for the treatment for peri-implantitis. A randomized controlled clinical study. Quintessence Int. 2020;51(7):546-53. DOI: 10.3290/j.qi.a44629.

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/32500862/

Khouly I, Braun RS, Silvestre T, Musa W, Miron RJ, Demyati A. Efficacy of antibiotic prophylaxis in intraoral bone grafting procedures: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2020;49(2):250-63. DOI: 10.1016/j.ijom.2019.07.003.

View at:

Publisher Site: https://www.ijoms.com/article/S0901-5027(19)31231-7/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/31371155/

Kostenko Y, Mochalov Y. [Experimental study of synthetic osteoplastic material easygraft® (Sunstar GUIDOR®) hardening due to different methods of its preparation]. Suchasna stomatilogiya.2018;3(92):41-6. [In Russian] DOI:

33295/1992-576X-2018-3-47-53

View at:

Publisher Site: https://www.dentalexpert.com.ua/index.php/stomatology/article/view/89

URL: https://dspace.uzhnu.edu.ua/jspui/handle/lib/20215

Ra G, Wo Q. Bone regeneration in dentistry: an overview. J Biol Regul Homeost Agents. 2021;35(1 Suppl. 1):37-46.

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/33463141/

Carvalho PHA, Trento GS, Moura LB, Cunha G, Gabrielli MAC, Pereira-Filho VA. Horizontal ridge augmentation using xenogenous bone graft-systematic review. Oral Maxillofac Surg. 2019 Sep;23(3):271-279. DOI: 10.1007/s10006-019-00777-y.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s10006-019-00777-y

PubMed: https://pubmed.ncbi.nlm.nih.gov/31089897/

Ribeiro J, Pereira RDS, Marin C, Granato R, Fernandes BDR, Mulinari-Santos G, Mendes BC, Hochuli E. Technical Strategy of Bone Graft Augmentation in the Anterior Maxilla. J Craniofac Surg. 2019 Sep;30(6):1873-4. DOI: 10.1097/SCS.0000000000005494.

View at:

Publisher Site: https://journals.lww.com/jcraniofacialsurgery/Abstract/2019/09000/Technical_Strategy_of_Bone_Graft_Augmentation_in.65.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/31756876/

Sanan A, Haines SJ. Repairing holes in the head: a history of cranioplasty. Neurosurgery. 1997 Mar;40(3):588-603. DOI: 10.1097/00006123-199703000-00033.

View at:

Publisher Site: https://journals.lww.com/neurosurgery/Abstract/1997/03000/Repairing_Holes_in_the_Head__A_History_of.33.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/9055300/

Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017; 105(5):1285-99. DOI: 10.1002/jbm.b.33651

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.b.33651

URL: https://sci-hub.se/10.1002/jbm.b.33651

Dental Bone Graft Substitute Market by Type (Synthetic Bone Grafts, Xenograft, Allograft, Alloplast), Application (Sinus Lift, Ridge Augmentation, Socket Preservation), Product (Bio-OSS, OsteoGraf, Grafton), End User (Hospital)-Global Forecast to 2025.

View at:

Publisher Site: https://www.marketsandmarkets.com/Market-Reports/dental-bone-graft-substitutes-market-159678690.html

Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol. 2019 Jun;46 Suppl 21:92-102. DOI: 10.1111/jcpe.13058.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1111/jcpe.13058

PubMed: https://pubmed.ncbi.nlm.nih.gov/30623986/

Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;130:112466. DOI: 10.1016/j.msec.2021.112466.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/pii/S0928493121006068?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/34702541/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555702/

Kühn KD, Berberich C, Bösebeck H. Knochenersatzwerkstoffe als lokale Wirkstoffträger: Aktueller Stand bei Ersatzstoffen verschiedenen Ursprungs. Orthopade. 2018;47(1):10-23. DOI: 10.1007/s00132-017-3505-4.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s00132-017-3505-4

Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules. 2021 May 18;26(10):3007. DOI: 10.3390/molecules26103007.

View at:

Publisher Site: https://www.mdpi.com/1420-3049/26/10/3007

PubMed: https://pubmed.ncbi.nlm.nih.gov/34070157/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158510/

Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J Orthop Trauma. 2019;33(4):203-13. DOI: 10.1097/BOT.0000000000001420.

View at:

Publisher Site: https://journals.lww.com/jorthotrauma/Abstract/2019/04000/Autograft,_Allograft,_and_Bone_Graft_Substitutes_.8.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/30633080/

Di Stefano DA, Orlando F, Ottobelli M, Fiori D, Garagiola U. A comparison between anorganic bone and collagen-preserving bone xenografts for alveolar ridge preservation: systematic review and future perspectives. Maxillofac Plast Reconstr Surg. 2022;44(1):24. DOI: 10.1186/s40902-022-00349-3.

View at:

Publisher Site: https://jkamprs.springeropen.com/articles/10.1186/s40902-022-00349-3

PubMed: https://pubmed.ncbi.nlm.nih.gov/35821286/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276906/

Soundarya SP, Menon AH, Chandran SV, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol. 2018;119:1228-39. DOI: 10.1016/j.ijbiomac.2018.08.056.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0141813018337164?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/30107161/

Galindo-Moreno P, Padial-Molina M, Lopez-Chaichio L, Gutiérrez-Garrido L, Martín-Morales N, O’Valle F. Algae-derived hydroxyapatite behavior as bone biomaterial in comparison with anorganic bovine bone: A split-mouth clinical, radiological, and histologic randomized study in humans. Clin. Oral Implant Res. 2020; 31(6):536-48. DOI: 10.1111/clr.13590

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/abs/10.1111/clr.13590

PubMed: https://pubmed.ncbi.nlm.nih.gov/32072685/

González-Sánchez MI, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C Mater Biol Appl. 2015;50:332-40. DOI: 10.1016/j.msec.2015.02.002.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/pii/S0928493115001125?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/25746278/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368440/

Nakagawa S, Okada R, Kushioka J, Kodama J, Tsukazaki H, Bal Z, Tateiwa D, Ukon Y, Hirai H, Makino T, Takenaka S, Okada S, Kaito T. Effects of rhBMP-2-loaded hydroxyapatite granules/beta-tricalcium phosphate hydrogel (HA/β-TCP/hydrogel) composite on a rat model of caudal intervertebral fusion. Sci Rep. 2022 May 12;12(1):7906. DOI: 10.1038/s41598-022-12082-y.

View at:

Publisher Site: https://www.nature.com/articles/s41598-022-12082-y

PubMed: https://pubmed.ncbi.nlm.nih.gov/35550600/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098867/

"BIOTECH 2.0" project

View at:

Publisher Site: https://www.peoplesproject.com/zbir-koshtiv-na-vidnovlennya-tyazhkoporanenix-vijskovosluzhbovciv-ta-civilnix-gromadyan-ukraini-z-dopomogoyu-regenerativnix-texnologij/

Rozis M, Evangelopoulos DS, Pneumaticos SG. Orthopedic Implant-Related Biofilm Pathophysiology: A Review of the Literature. Cureus. 2021 Jun 14;13(6):e15634. DOI: 10.7759/cureus.15634.

View at:

Publisher Site: https://www.cureus.com/articles/54504-orthopedic-implant-related-biofilm-pathophysiology-a-review-of-the-literature

PubMed: https://pubmed.ncbi.nlm.nih.gov/34306846/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278357/

Mauceri R, Campisi G, Matranga D, Mauceri N, Pizzo G, Melilli D. The Role of Antibiotic Prophylaxis in Reducing Bacterial Contamination of Autologous Bone Graft Collected from Implant Site. Biomed Res Int. 2017; 2017:2175019. DOI: 10.1155/2017/2175019.

View at:

Publisher Site: https://www.hindawi.com/journals/bmri/2017/2175019/

PubMed: https://pubmed.ncbi.nlm.nih.gov/29423403/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750498/

Coraça-Huber DC, Putzer D, Fille M, Hausdorfer J, Nogler M, Kühn KD. Gentamicin palmitate as a new antibiotic formulation for mixing with bone tissue and local release. Cell Tissue Bank. 2014;15(1):139-44. DOI: 10.1007/s10561-013-9384-y.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s10561-013-9384-y

PubMed: https://pubmed.ncbi.nlm.nih.gov/23793827/

Allende C, Mangupli M, Bagliardelli J, Diaz P, Allende BT. Infected nonunions of long bones of the upper extremity: staged reconstruction using polymethylmethacrylate and bone graft impregnated with antibiotics. Chir Organi Mov. 2009;93(3):137-42. DOI: 10.1007/s12306-009-0046-y.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s12306-009-0046-y

PubMed: https://pubmed.ncbi.nlm.nih.gov/19876707/

Taşdemir U, Özeç İ, Esen HH, Avunduk MC. The influence of rifamycin decontamination on incorporation of autologous onlay bone grafts in rats: A histometric and immunohistochemical evaluation. Arch Oral Biol. 2015;60(5):724-9. DOI: 10.1016/j.archoralbio.2014.12.010.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0003996914003227?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/25748392/

Beck S, Sehl C, Voortmann S, Verhasselt HL, Edwards MJ, Buer J, Hasenberg M, Gulbins E, Becker KA. Sphingosine is able to prevent and eliminate Staphylococcus epidermidis biofilm formation on different orthopedic implant materials in vitro. J Mol Med (Berl). 2020;98(2):209-19. DOI: 10.1007/s00109-019-01858-x.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s00109-020-01874-2

PubMed: https://pubmed.ncbi.nlm.nih.gov/31970428/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007907/

Van Vugt TA, Geurts J, Arts JJ. Clinical Application of Antimicrobial Bone Graft Substitute in Osteomyelitis Treatment: A Systematic Review of Different Bone Graft Substitutes Available in Clinical Treatment of Osteomyelitis. Biomed Res Int. 2016; 2016:6984656. DOI: 10.1155/2016/6984656.

View at:

Publisher Site: https://www.hindawi.com/journals/bmri/2016/6984656/

Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv. 2021;28(1):2392-414. DOI: 10.1080/10717544.2021.1998246.

View at:

Publisher Site: https://www.tandfonline.com/doi/full/10.1080/10717544.2021.1998246

PubMed: https://pubmed.ncbi.nlm.nih.gov/34755579/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583938/

Anagnostakos K, Schröder K. Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: a systematic review of the literature. Int J Biomater. 2012;2012:538061. DOI: 10.1155/2012/538061.

View at:

Publisher Site: https://www.hindawi.com/journals/ijbm/2012/538061/

PubMed: https://pubmed.ncbi.nlm.nih.gov/22899933/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412111/

Peeters A, Putzeys G, Thorrez L. Current Insights in the Application of Bone Grafts for Local Antibiotic Delivery in Bone Reconstruction Surgery. J Bone Jt Infect. 2019;4(5):245-53. DOI: 10.7150/jbji.38373.

View at:

Publisher Site: https://jbji.copernicus.org/articles/4/245/2019/

PubMed: https://pubmed.ncbi.nlm.nih.gov/31700774/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831806/

Hasan R, Schaner K, Mulinti P, Brooks A. A Bioglass-Based Antibiotic (Vancomycin) Releasing Bone Void Filling Putty to Treat Osteomyelitis and Aid Bone Healing. Int J Mol Sci. 2021;22(14):7736. DOI: 10.3390/ijms22147736.

View at:

Publisher Site: https://www.mdpi.com/1422-0067/22/14/7736

PubMed: https://pubmed.ncbi.nlm.nih.gov/34299362/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304857/

Li B, Zhang Y, Zhao Y. [Preparation of gentamicin-impregnated bone allograft and experimental study on treatment of infective bone defect]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006 Sep;20(9):920-4. [Article in Chinese]

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/17036982/

Curley J, Hasan MR, Larson J, Brooks BD, Liu Q, Jain T, Joy A, Brooks AE. An Osteoconductive Antibiotic Bone Eluting Putty with a Custom Polymer Matrix. Polymers (Basel). 2016;8(7):247. DOI: 10.3390/polym8070247.

View at:

Publisher Site: https://www.mdpi.com/2073-4360/8/7/247

PubMed: https://pubmed.ncbi.nlm.nih.gov/30974523/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432247/

Frommelt L. Anwendung von Antibiotika im Knochen: Prophylaxe und aktuelle Therapiestandards. Orthopade. 2018;47(1):24-9. DOI: 10.1007/s00132-017-3508-1.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s00132-017-3508-1

Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). Biofouling. 2021 Jan;37(1):1-35. DOI: 10.1080/08927014.2020.1869725.

View at:

Publisher Site: https://www.tandfonline.com/doi/abs/10.1080/08927014.2020.1869725?journalCode=gbif20

PubMed: https://pubmed.ncbi.nlm.nih.gov/33618584/

Mathijssen NM, Petit PL, Pilot P, Schreurs BW, Buma P, Bloem RM. Impregnation of bone chips with antibiotics and storage of antibiotics at different temperatures: an in vitro study. BMC Musculoskelet Disord. 2010;11:96. DOI: 10.1186/1471-2474-11-96.

View at:

Publisher Site: https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/1471-2474-11-96

PubMed: https://pubmed.ncbi.nlm.nih.gov/20500808/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887391/

Klapkova E, Nescakova M, Melichercik P, Jahoda D, Dunovska K, Cepova J, Prusa R. Vancomycin and its crystalline degradation products released from bone grafts and different types of bone cement. Folia Microbiol (Praha). 2020;65(3):475-82. DOI: 10.1007/s12223-019-00752-w.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s12223-019-00752-w

PubMed: https://pubmed.ncbi.nlm.nih.gov/31654320/

Coelho CC, Padrão T, Costa L, Pinto MT, Costa PC, Domingues VF, Quadros PA, Monteiro FJ, Sousa SR. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci Rep. 2020;10(1):19098. DOI: 10.1038/s41598-020-76063-9.

View at:

Publisher Site: https://www.nature.com/articles/s41598-020-76063-9

PubMed: https://pubmed.ncbi.nlm.nih.gov/33154428/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645747/

Furustrand Tafin U, Betrisey B, Bohner M, Ilchmann T, Trampuz A, Clauss M. Staphylococcal biofilm formation on the surface of three different calcium phosphate bone grafts: a qualitative and quantitative in vivo analysis. J Mater Sci Mater Med. 2015;26(3):130. DOI: 10.1007/s10856-015-5467-6.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s10856-015-5467-6

PubMed: https://pubmed.ncbi.nlm.nih.gov/25693675/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333228/

Rau JV, Wu VM, Graziani V, Fadeeva IV, Fomin AS, Fosca M, Uskoković V. The Bone Building Blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria. Mater Sci Eng C Mater Biol Appl. 2017;79:270-9. DOI: 10.1016/j.msec.2017.05.052.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/pii/S0928493117309839

PubMed: https://pubmed.ncbi.nlm.nih.gov/28629018/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5523820/

Rousseau M, Anderson DE, Lillich JD, Apley MD, Jensen PJ, Biris AS. In vivo assessment of a multicomponent and nanostructural polymeric matrix as a delivery system for antimicrobials and bone morphogenetic protein-2 in a unicortical tibial defect in goats. Am J Vet Res. 2014;75(3):240-50. DOI: 10.2460/ajvr.75.3.240.

View at:

Publisher Site: https://avmajournals.avma.org/view/journals/ajvr/75/3/ajvr.75.3.240.xml

PubMed: https://pubmed.ncbi.nlm.nih.gov/24564309/

Tateiwa D, Nakagawa S, Tsukazaki H, Okada R, Kodama J, Kushioka J, Bal Z, Ukon Y, Hirai H, Kaito T. A novel BMP-2-loaded hydroxyapatite/beta-tricalcium phosphate microsphere/hydrogel composite for bone regeneration. Sci Rep. 2021;11(1):16924. DOI: 10.1038/s41598-021-96484-4.

View at:

Publisher Site: https://www.nature.com/articles/s41598-021-96484-4

PubMed: https://pubmed.ncbi.nlm.nih.gov/34413442/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376985/

Simonpieri A, Corso MD, Sammartino G, Ehrenfest DMD. The relevance of Choukroun's platelet-rich fibrin and metronidazole during complex maxillary rehabilitations using bone allograft. Part II: implant surgery, prosthodontics, and survival. Implant Dent. 2009;18(3):220-9. DOI: 10.1097/ID.0b013e31819b5e3f.

View at:

Publisher Site: https://journals.lww.com/implantdent/Fulltext/2009/06000/The_Relevance_of_Choukroun_s_Platelet_Rich_Fibrin.6.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/19509532/

Tommasi G, Perni S, Prokopovich P. An Injectable Hydrogel as Bone Graft Material with Added Antimicrobial Properties. Tissue Eng Part A. 2016;22(11-12):862-72. DOI: 10.1089/ten.TEA.2016.0014.

View at:

Publisher Site: https://www.liebertpub.com/doi/10.1089/ten.tea.2016.0014

PubMed: https://pubmed.ncbi.nlm.nih.gov/27174392/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913507/

Xia YJ, Wang W, Xia H, Huang XH, Deng FP, Ying QS, Yu X, Li LH, Wang JH, Zhang Y. Preparation of Coralline Hydroxyapatite Implant with Recombinant Human Bone Morphogenetic Protein-2-Loaded Chitosan Nanospheres and Its Osteogenic Efficacy. Orthop Surg. 2020;12(6):1947-53. DOI: 10.1111/os.12752.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1111/os.12752

PubMed: https://pubmed.ncbi.nlm.nih.gov/33080108/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767670/

Ramesh N, Moratti SC, Dias GJ. Hydroxyapatite-polymer biocomposites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater. 2018;106(5):2046-57. DOI: 10.1002/jbm.b.33950.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.b.33950

PubMed: https://pubmed.ncbi.nlm.nih.gov/28650094/

Moghanian A, Portillo-Lara R, Shirzaei Sani E, Konisky H, Bassir SH, Annabi N. Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. J Tissue Eng Regen Med. 2020;14(1):66-81. DOI: 10.1002/term.2964.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/abs/10.1002/term.2964

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.