PHARMACOGENETIC ASPECTS OF THE USE OF PERIOPERATIVE DRUGS IN PEDIATRICS. Review
Article PDF (Українська)

Keywords

pharmacogenetics, general anesthetics, analgesics, muscle relaxants, children

Abstract views: 43
PDF Downloads: 30

How to Cite

Khaitovych , M., Kysil, N., & Zhovnir , V. (2022). PHARMACOGENETIC ASPECTS OF THE USE OF PERIOPERATIVE DRUGS IN PEDIATRICS. Review. Medical Science of Ukraine (MSU), 18(2), 79-88. https://doi.org/10.32345/2664-4738.2.2022.10

Abstract

Relevance. It is known that in children the frequency of perioperative critical events due to the introduction of drugs is more than 5%. For example fentanyl, which is used as an adjunct to surgical anesthesia, is a major factor in increasing the number of deaths from opioid overdoses. Among the areas of reducing the frequency of severe adverse reactions to perioperative drugs - taking into account the pharmacogenetic variations of the patient.

Objective is to consider current data on pharmacogenetic aspects of pharmacokinetics and pharmacodynamics of perioperative drugs.

Methods. Analysis of the data presented in PubMed by keywords "pharmacogenetics", "general anesthetics", "analgesics", "muscle relaxants", "children". Search depth – 7 years (2014-2020), with a retrospective deepening of some positions until 2002.

Results. The pharmacogenetic aspects of the pharmacokinetics of perioperative drugs are related to the genes of the enzymes that metabolize them and their transporters. Current data on the prevalence of polymorphic alleles of CYP2C9 genes (provides metabolism of nonsteroidal anti-inflammatory and anticonvulsant drugs) and CYP2D6 (metabolizes opioids, antidepressants, antiemetics) in Europe and, in particular, in Ukraine were presented. Thus, the inactive allele CYP2C19 * 2 was found in 13%, while the allele of increased activity CYP2C19 * 17 - in 25% of the population of Ukraine; allele with lost CYP2D6 function (CYP2D6 * 4) - in 18.6% of Ukrainians. Homozygotes with CYP2C9 * 3 polymorphism metabolize nonsteroidal anti-inflammatory drugs much more slowly than wild-type carriers, which may lead to their accumulation and side effects. The analgesic effect of codeine occurs only after it is metabolized in the liver by CYP2D6 to morphine. Respiratory depression, apnea and death may occur in patients with excessive metabolic rate even after a single dose of codeine; however, was noted the ineffectiveness of ondansetron due to a decrease in its concentration in the blood in thesepatients. Concomitant use of midazolam and fentanyl may prolong the effect of fentanyl by  competing metabolism of midazolam by the hepatic enzyme CYP3A4, especially in patients with low metabolism. Plasma butyrylcholinesterase deficiency reduces succinylcholine inactivation in 1 in 1,500 people. Changing the genotype of uridine diphosphate glycosyltransferase causes increased glucuronidation of morphine, which may lead to a decrease in its effectiveness. As an example of pharmacogenetic changes in pharmacodynamics can be considered malignant hyperthermia, which occurs due to exposure to volatile anesthetics and depolarizing muscle relaxants in mutations in the RYR1 gene. Carriers of the minor allele (G) of the 5HT2A rs6313 gene require less propofol and 40% less time to start induction of anesthesia.

Conclusions. The efficacy and safety of perioperative drugs are largely related to the pharmacogenetic aspects of their pharmacokinetics, especially mutations in genes of enzymes of the metabolism. Mutations in the genes of volatile anesthetic receptors and depolarizing muscle relaxants when their used cause a risk of malignant hyperthermia. The application of pharmacogenetics is the need to titrate drugs that have significant variability of action depending on the genotype. It is advisable to avoid the use of drugs with a high risk of pharmacogenetic reactions, if other alternative drugs are available.

https://doi.org/10.32345/2664-4738.2.2022.10
Article PDF (Українська)

References

Nanji KC, Patel A, Shaikh S, Seger DL, Bates DW. Evaluation of Perioperative Medication Errors and Adverse Drug Events. Anesthesiology. 2016 Jan; 124(1):25-34. DOI: 10.1097/ALN.0000000000000904.

View at:

Publisher Site: https://pubs.asahq.org/anesthesiology/article/124/1/25/14281/Evaluation-of-Perioperative-Medication-Errors-and

PubMed: https://pubmed.ncbi.nlm.nih.gov/26501385/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681677/

Gerhard GS, Kaniper S, Paynton B. Fentanyl overdoses and pharmacogenetics. Pharmacogenet Genomics. 2020 Jan; 30(1):5-8. DOI: 10.1097/FPC.0000000000000389.

View at:

Publisher Site: https://journals.lww.com/jpharmacogenetics/Abstract/2020/01000/Fentanyl_overdoses_and_pharmacogenetics.2.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/31651722/

Habre W, Disma N, Virag K, Becke K, Hansen TG, Jöhr M, Leva B, Morton NS, Vermeulen PM, Zielinska M, Boda K, Veyckemans F, APRICOT Group of the European Society of Anaesthesiology Clinical Trial Network. Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe. Lancet Respir Med. 2017 May; 5(5):412-425. DOI: 10.1016/S2213-2600(17)30116-9.

View at:

Publisher Site: https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(17)30116-9/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/28363725/

Patton K, Borshoff DC. Adverse drug reactions. Anaesthesia. 2018 Jan; 73(Suppl 1):76-84. DOI: 10.1111/anae.14143.

View at:

Publisher Site: https://associationofanaesthetists-publications.onlinelibrary.wiley.com/doi/full/10.1111/anae.14143

Xie S, Ma W, Guo Q, Liu J, Li W, McLeod HL, He Y. The pharmacogenetics of medications used in general anesthesia. Pharmacogenomics. 2018; 19(3): 285-298. DOI: 10.2217/pgs-2017-0168

View at:

Publisher Site: https://www.futuremedicine.com/doi/10.2217/pgs-2017-0168

PubMed: https://pubmed.ncbi.nlm.nih.gov/29318929/

Škarić-Jurić T, Tomas Z, Petranović MZ, Božina N, Narančić NS, Janićijević B, Salihović MP. Characterization of ADME genes variation in Roma and 20 populations worldwide. PLoS One. 2018; 13(11):e0207671. DOI: 10.1371/journal.pone.0207671.

View at:

Publisher Site: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207671

PubMed: https://pubmed.ncbi.nlm.nih.gov/30452466/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242375/

Hubacek JA. Drug metabolising enzyme polymorphisms in Middle- and Eastern-European Slavic populations. Drug Metabol Drug Interact. 2014; 29(1):29-36. DOI: 10.1515/dmdi-2013-0052.

View at:

Publisher Site: https://www.degruyter.com/document/doi/10.1515/dmdi-2013-0052/html

PubMed: https://pubmed.ncbi.nlm.nih.gov/24334411/

Chidambaran V. Genomics relevant to the neuroanaesthesiologist. Journal of Neuroanaesthesiology and Critical Care. 2016; 3: S44-S52. DOI:10.4103/2348-0548.174735

View at:

Publisher Site: https://www.thieme-connect.com/products/ejournals/abstract/10.4103/2348-0548.174735

URL: https://www.thieme-connect.com/products/ejournals/pdf/10.4103/2348-0548.174735.pdf

Petrović J, Pešić V, Lauschke VM. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 2020 Jan; 28(1):88-94. DOI: 10.1038/s41431-019-0480-8.

View at:

Publisher Site: https://www.nature.com/articles/s41431-019-0480-8

Inomata S, Nagashima A, Itagaki F, Homma M, Nishimura M, Osaka Y, Okuyama K, Tanaka E, Nakamura T, Kohda Y, Naito S, Miyabe M, Toyooka H. CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia. Clin Pharmacol Ther. 2005; 78:647‑55. DOI: 10.1016/j.clpt.2005.08.020.

View at:

Publisher Site: https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1016/j.clpt.2005.08.020

Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, Haidar CE, Shen DD, Callaghan JT, Sadhasivam S, Prows CA, Kharasch ED, Skaar TC, Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014 Apr; 95(4):376-82. DOI: 10.1038/clpt.2013.254.

View at:

Publisher Site: https://ascpt.onlinelibrary.wiley.com/doi/10.1038/clpt.2013.254

PubMed: https://pubmed.ncbi.nlm.nih.gov/24458010/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975212/

Galinkin JL. Practical Pediatric Pharmacogenetics (Dosing/Reactions/etc)

View at:

URL: https://www2.pedsanesthesia.org/meetings/2008annual/syllabus/Lecture-Galinkin.pdf

Tobias JD, Green TP, Coté CJ. Codeine: Time to Say "No". Pediatrics. 2016 Oct; 138(4):e20162396. DOI: 10.1542/peds.2016-2396.

View at:

Publisher Site: https://publications.aap.org/pediatrics/article/138/4/e20162396/52374/Codeine-Time-to-Say-No?autologincheck=redirected

PubMed: https://pubmed.ncbi.nlm.nih.gov/27647717/

Chidambaran V, Sadhasivam S, Mahmoud M. Codeine and opioid metabolism: implications and alternatives for pediatric pain management. Curr Opin Anaesthesiol. 2017 Jun; 30(3):349-356. DOI: 10.1097/ACO.0000000000000455.

View at:

Publisher Site: https://journals.lww.com/co-anesthesiology/Abstract/2017/06000/Codeine_and_opioid_metabolism__implications_and.14.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/28323671/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482206/

Balyan R, Mecoli M, Venkatasubramanian R, Chidambaran V, Kamos N, Clay S, Moore DL, Mavi J, Glover CD, Szmuk P, Vinks A, Sadhasivam S. CYP2D6 pharmacogenetic and oxycodone pharmacokinetic association study in pediatric surgical patients. Pharmacogenomics. 2017; 18(4):337-348. DOI: 10.2217/pgs-2016-0183.

View at:

Publisher Site: https://www.futuremedicine.com/doi/10.2217/pgs-2016-0183

PubMed: https://pubmed.ncbi.nlm.nih.gov/28244808/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558529/

Miotto K, Cho AK, Khalil MA, Blanco K, Sasaki JD, Rawson R. Trends in Tramadol: Pharmacology, Metabolism, and Misuse. Anesth Analg. 2017; 124(1):44-51. DOI: 10.1213/ANE.0000000000001683.

View at:

Publisher Site: https://journals.lww.com/anesthesia-analgesia/Fulltext/2017/01000/Trends_in_Tramadol__Pharmacology,_Metabolism,_and.10.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/27861439/

Obeng AO, Hamadeh I, Smith M. Review of Opioid Pharmacogenetics and Considerations for Pain Management. Pharmacotherapy. 2017; 37(9):1105-1121. DOI: 10.1002/phar.1986.

View at:

Publisher Site: https://accpjournals.onlinelibrary.wiley.com/doi/10.1002/phar.1986

PubMed: https://pubmed.ncbi.nlm.nih.gov/28699646/

Jin M, Gock SB, Jannetto PJ, Jentzen JM, Wong SH. Pharmacogenomics as molecular autopsy for forensic toxicology: Genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol. 2005; 29(7):590‑8. DOI: 10.1093/jat/29.7.590.

View at:

Publisher Site: https://academic.oup.com/jat/article/29/7/590/731303?login=false

PubMed: https://pubmed.ncbi.nlm.nih.gov/16419387/

Saiz-Rodríguez M, Ochoa D, Herrador C, Belmonte C, Román M, Alday E., Koller D, Zubiaur P, Mejía G, Hernández-Martínez M, Abad-Santos F. Polymorphisms associated with fentanyl pharmacokinetics, pharmacodynamics and adverse effects. Basic Clin Pharmacol Toxicol. 2019 Mar; 124(3):321-329. DOI: 10.1111/bcpt.13141

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/full/10.1111/bcpt.13141

PubMed: https://pubmed.ncbi.nlm.nih.gov/30281924/

Khaitovych MV. [Drug transporter glycoprotein-p: clinical relevance]. Medical Science of Ukraine. 2016; 12(1-2):86-93. [in Ukrainian]

View at:

Publisher Site: https://msu-journal.com/index.php/journal/article/view/115

NBUV: http://nbuv.gov.ua/UJRN/nvnmu_2016_12_1-2_14

Meineke I, Freudenthaler S, Hofmann U, Schaeffeler E, Mikus G, Schwab M, Prange HW, Gleiter CH, Brockmöller J. Pharmacokinetic modelling of morphine, morphine‑3‑glucuronide and morphine‑6‑glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short‑term infusion of morphine. Br J Clin Pharmacol. 2002; 54(6):592‑603. DOI: 10.1046/j.1365-2125.2002.t01-1-01689.x.

View at:

Publisher Site: https://onlinelibrary.wiley.com/resolve/doi?DOI=10.1046/j.1365-2125.2002.t01-1-01689.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/12492606/

Sadhasivam S, Chidambaran V, Zhang X, Meller J, Esslinger H, Zhang K, Martin LJ, McAuliffe J. Opioid‑induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharmacogenomics J. 2015;15(2):119‑26. DOI: 10.1038/tpj.2014.56.

View at:

Publisher Site: https://www.nature.com/articles/tpj201456

PubMed: https://pubmed.ncbi.nlm.nih.gov/25311385/

Zhong Q, Chen X, Zhao Y, Liu R, Yao S. Association of Polymorphisms in Pharmacogenetic Candidate Genes with Propofol Susceptibility. Scientific Reports. 2017; 7(1): 3343. DOI:10.1038/s41598-017-03229-3.

View at:

Publisher Site: https://www.nature.com/articles/s41598-017-03229-3

PubMed: https://pubmed.ncbi.nlm.nih.gov/28611364/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469860/

Janicki PK, Vealey R, Liu J, Escajeda J, Postula M, Welker K. Genome‑wide Association study using pooled DNA to identify S52 candidate markers mediating susceptibility to postoperative nausea and vomiting. Anesthesiology. 2011;115(1):54‑64. DOI: 10.1097/ALN.0b013e31821810c7.

View at:

Publisher Site: https://pubs.asahq.org/anesthesiology/article/115/1/54/12810/Genome-wide-Association-Study-Using-Pooled-DNA-to

PubMed: https://pubmed.ncbi.nlm.nih.gov/21694509/

Nakagawa M, Kuri M, Kambara N, Tanigami H, Tanaka H, Kishi Y, Hamajima N. Dopamine D2 receptor Taq IA polymorphism is associated with postoperative nausea and vomiting. J Anesth. 2008;22(4):397‑403. DOI: 10.1007/s00540-008-0661-z.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s00540-008-0661-z

PubMed: https://pubmed.ncbi.nlm.nih.gov/19011779/

Kaur H, Katyal N, Yelam A, Kumar K, Srivastava H, Govindarajan R. Malignant Hyperthermia. Mo Med. 2019;116(2):154-159.

View at:

Publisher Site: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461318/

PubMed: https://pubmed.ncbi.nlm.nih.gov/31040503/

MacKenzie M, Hall R. Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review. Can J Anesth. 2017; 64(1):45-64. DOI: 10.1007/s12630-016-0748-1.

View at:

Publisher Site: https://link.springer.com/article/10.1007/s12630-016-0748-1

PubMed: https://pubmed.ncbi.nlm.nih.gov/27752976/

Awad H, Ahmed A, Urman RD, Stoicea N, Bergese SD. Potential role of pharmacogenomics testing in the setting of enhanced recovery pathways after surgery. Pharmacogenomics Pers Med. 2019;12:145-154. DOI: 10.2147/PGPM.S198224.

View at:

Publisher Site: https://www.dovepress.com/potential-role-of-pharmacogenomics-testing-in-the-setting-of-enhanced--peer-reviewed-fulltext-article-PGPM

PubMed: https://pubmed.ncbi.nlm.nih.gov/31440074/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6666379/

Behrooz A. Pharmacogenetics and anaesthetic drugs: Implications for perioperative practice. Ann Med Surg (Lond). 2015; 4(4):470-474. DOI: 10.1016/j.amsu.2015.11.001

View at:

Publisher Site: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685230/

PubMed: https://pubmed.ncbi.nlm.nih.gov/26779337/

PubMed Central: https://www.sciencedirect.com/science/article/pii/S204908011500120X?via%3Dihub

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.