THE ROLE OF CATESTATIN IN THE REGULATION OF METABOLIC DISORDERS. Review
Article PDF (Українська)

Keywords

catestatin, insulin resistance, lipolysis, obesity, metabolic syndrome

Abstract views: 69
PDF Downloads: 27

How to Cite

Pankova , O. (2022). THE ROLE OF CATESTATIN IN THE REGULATION OF METABOLIC DISORDERS. Review. Medical Science of Ukraine (MSU), 18(2), 69-78. https://doi.org/10.32345/2664-4738.2.2022.09

Abstract

Relevance. Cardiovascular diseases occupy leading positions in the structure of morbidity and mortality both in Ukraine and in other countries. Metabolic disorders are one of the leading risk factors for the development and progression of cardiovascular diseases. In accordance with the above-mentioned special attention should be paid to catestatin, which regulates carbohydrate and lipid metabolism, that determines its diagnostic potential in the management of diseases, which are accompanied by metabolic dysregulation.

Objective: Determination of the diagnostic potential of catestatin in the management of diseases associated with metabolic disorders such as type 2 diabetes mellitus, obesity and metabolic syndrome, in accordance with its role in the regulation of metabolic homeostasis based on the analysis of data literature sources.

Methods. Analysis of the research results by reviewing electronic scientometric databases PubMed and Google Scholar by keywords.

Results. The influence of catestatin on the pathogenetic mechanisms of cardiometabolic diseases is analyzed. The general characteristic of catestatin and its physiological properties is given. The effect of catestatin on carbohydrate metabolism due to its insulin-like action is studied, which in combination with antioxidant, immunomodulatory and anti-inflammatory action of catestatin determines its role in the regulation of glucose metabolism. The property of catestatin to regulate cardiometabolic homeostasis by modulating the bioenergetic activity of the myocardium is noted. Mechanisms of regulation of fat metabolism by catestatin are established, in particular, realization of its lipolytic effect due to suppression of α2-adrenoreceptors and regulation of adrenergic and leptin signaling. Correlations between catestatin levels and lipid profile and anthropometric data are considered. Typical changes in catestatin levels at the development of cardiometabolic diseases are defined.

Conclusions. Catestatin has metabolic effects, in particular, participates in the regulation of carbohydrate and lipid metabolism, which determines its prognostic role in the development and progression of cardiometabolic diseases.

https://doi.org/10.32345/2664-4738.2.2022.09
Article PDF (Українська)

References

AlShahrani MS. Prevalence of obesity and overweight among type 2 diabetic patients in Bisha, Saudi Arabia. J Family Med Prim Care. 2021; 10(1):143-148. DOI: 10.4103/jfmpc.jfmpc_1349_20

View at:

Publisher Site: https://journals.lww.com/jfmpc/Fulltext/2021/10010/Prevalence_of_obesity_and_overweight_among_type_2.25.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/34017717/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132811/

Fahed G, Aoun L, Bou Zerdan M, Allam S, Zerdan MB, Bouferraa Y, Assi HI. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci. 2022; 23(2):786. DOI: 10.3390/ijms23020786

View at:

Publisher Site: https://www.mdpi.com/1422-0067/23/2/786

PubMed: https://pubmed.ncbi.nlm.nih.gov/35054972/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775991/

Bozic J, Kumric M, Kurir TT, Urlic H, Martinovic D, Vilovic M, Mrcela NT, Borovac JA. Catestatin as a Biomarker of Cardiovascular Diseases: A Clinical Perspective. Biomedicines. 2021; 9(12):1757. DOI: 10.3390/biomedicines9121757

View at:

Publisher Site: https://www.mdpi.com/2227-9059/9/12/1757

PubMed: https://pubmed.ncbi.nlm.nih.gov/34944578/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698910/

Pankova OА. [Catestatin as a regulator of sympathetic nervous system activity and its influence on the development and progression of arterial hypertension and type 2 diabetes mellitus]. Problems of Uninterrupted Medical training and science. 2021; 2(42):49-54. [in Ukrainian]. DOI: 10.31071/promedosvity2021.02.049

Bourebaba Y, Mularczyk M, Marycz K, Bourebaba L. Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother. 2021; 134:111113. DOI: 10.1016/j.biopha.2020.111113

View at:

Publisher Site: https://www.sciencedirect.com/science/article/pii/S0753332220313068?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/33341043/

Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ. Novel Autocrine Feedback Control of Catecholamine Release. A Discrete Chromogranin A Fragment is a Noncompetitive Nicotinic Cholinergic Antagonist. J Clin Invest. 1997; 100(6):1623-1633. DOI: 10.1172/jci119686

View at:

Publisher Site: https://www.jci.org/articles/view/119686

PubMed: https://pubmed.ncbi.nlm.nih.gov/9294131/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC508344/

O’Connor DT, Zhu G, Rao F, Taupenot L, Fung MM, Das M, Mahata SK, Mahata M, Wang L, Zhang K, Greenwood TA, Shih PB, Cockburn MG, Ziegler MG, Stridsberg M, Martin NG, Whitfield JB. Heritability and Genome-Wide Linkage in US and Australian Twins Identify Novel Genomic Regions Controlling Chromogranin A. Implications for Secretion and Blood Pressure. Circulation. 2008; 118(3):247-257. DOI: 10.1161/CIRCULATIONAHA.107.709105

View at:

Publisher Site: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.107.709105

PubMed: https://pubmed.ncbi.nlm.nih.gov/18591442/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654229/

Wang D, Liu T, Shi S, Li R, Shan Y, Huang Y, Hu D, Huang C. Chronic Administration of Catestatin Improves Autonomic Function and Exerts Cardioprotective Effects in Myocardial Infarction Rats. J Cardiovasc Pharmacol Ther. 2016; 21(6):526-535. DOI: 10.1177/1074248416628676

View at:

Publisher Site: https://journals.sagepub.com/doi/10.1177/1074248416628676

PubMed: https://pubmed.ncbi.nlm.nih.gov/26821570/

Perrelli MG, Tullio F, Angotti C, Cerra MC, Angelone T, Tota B, Alloatti G, Penna C, Pagliaro P. Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signalling. Pflugers Arch - Eur J Physiol. 2013; 465(7):1031-1040. DOI: 10.1007/s00424-013-1217-0

View at:

Publisher Site: https://link.springer.com/article/10.1007/s00424-013-1217-0

PubMed: https://pubmed.ncbi.nlm.nih.gov/23319164/

Chu SY, Peng F, Wang J, Liu L, Meng L, Zhao J, Han X-N, Ding W-H. Catestatin in defense of oxidative-stress-induced apoptosis: A novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides. 2020; 123:170200. DOI: 10.1016/j.peptides.2019.170200

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0196978119301780?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/31730792/

Angelone T, Quintieri AM, Brar BK, Limchaiyawat PT, Tota B, Mahata SK, Cerra MC. The Antihypertensive Chromogranin A Peptide Catestatin Acts as a Novel Endocrine/Paracrine Modulator of Cardiac Inotropism and Lusitropism. Endocrinology. 2008; 149(10):4780-4793. DOI: 10.1210/en.2008-0318

View at:

Publisher Site: https://academic.oup.com/endo/article/149/10/4780/2455030?login=false

PubMed: https://pubmed.ncbi.nlm.nih.gov/18535098/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582908/

Angelone T, Quintieri AM, Pasqua T, Filice E, Cantafio P, Scavello F, Rocca C, Mahata SK, Gattuso A, Cerra MC. The NO stimulator, Catestatin, improves the Frank-Starling response in normotensive and hypertensive rat hearts. Nitric Oxide. 2015; 50:10-19. DOI: 10.1016/j.niox.2015.07.004

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S1089860315300057?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/26241941/

Krüger PG, Mahata SK, Helle KB. Catestatin (CgA344-364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regul pept. 2003; 114(1):29-35. DOI: 10.1016/s0167-0115(03)00069-7

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0167011503000697

PubMed: https://pubmed.ncbi.nlm.nih.gov/12763637/

Scavello F, Mutschler A, Hellé S, Schneider F, Chasserot-Golaz S, Strub J-M, Cianferani S, Haikel Y, Metz-Boutigue M-H. Catestatin in innate immunity and Cateslytin-derived peptides against superbugs. Sci Rep. 2021; 11(1):15615. DOI: 10.1038/s41598-021-94749-6

View at:

Publisher Site: https://www.nature.com/articles/s41598-021-94749-6

PubMed: https://pubmed.ncbi.nlm.nih.gov/34341386/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329280/

Ying W, Tang K, Avolio E, Schilling JM, Pasqua T, Liu MA, Cheng H, Gao H, Zhang J, Mahata S, Ko MS, Bandyopadhyay G, Das S, Roth DM, Sahoo D, Webster NJG, Sheikh F, Ghosh G, Patel HH, Ghosh P, Bogaart G, Mahata SK. Immunosuppression of Macrophages Underlies the Cardioprotective Effects of CST (Catestatin). Hypertension. 2021; 77(5):1670-1682. DOI: 10.1161/HYPERTENSIONAHA.120.16809

View at:

Publisher Site: https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.120.16809

PubMed: https://pubmed.ncbi.nlm.nih.gov/33826401/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116433/

Ying W, Mahata S, Bandyopadhyay GK, Zhou Z, Wollam J, Vu J, Mayoral R, Chi N-W, Webster NJG, Corti A, Mahata SK. Catestatin Inhibits Obesity-Induced Macrophage Infiltration and Inflammation in the Liver and Suppresses Hepatic Glucose Production, Leading to Improved Insulin Sensitivity. Diabetes. 2018; 67(5):841-848. DOI: 10.2337/db17-0788

View at:

Publisher Site: https://diabetesjournals.org/diabetes/article/67/5/841/39910/Catestatin-Inhibits-Obesity-Induced-Macrophage

PubMed: https://pubmed.ncbi.nlm.nih.gov/29432123/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463753/

Dasgupta A, Bandyopadhyay GK, Ray I, Bandyopadhyay K, Chowdhury N, De RK, Mahata SK. Catestatin improves insulin sensitivity by attenuating endoplasmic reticulum stress: In vivo and in silico validation. Comput Struct Biotechnol J. 2020; 18:464-481. DOI: 10.1016/j.csbj.2020.02.005

View at:

Publisher Site: https://www.sciencedirect.com/science/article/pii/S2001037019302909

Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000; 287(5453):664-6. DOI: 10.1126/science.287.5453.664

View at:

Publisher Site: https://www.science.org/doi/10.1126/science.287.5453.664

PubMed: https://pubmed.ncbi.nlm.nih.gov/10650002/

Wang H, Karnati S, Madhusudhan T. Regulation of the Homeostatic Unfolded Protein Response in Diabetic Nephropathy. Pharmaceuticals. 2022; 15(4):401. DOI: 10.3390/ph15040401

View at:

Publisher Site: https://www.mdpi.com/1424-8247/15/4/401

PubMed: https://pubmed.ncbi.nlm.nih.gov/35455399/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030951/

Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson ME, Tabas I. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest. 2009; 119(10):2925-2941. DOI: 10.1172/JCI38857

View at:

Publisher Site: https://www.jci.org/articles/view/38857

PubMed: https://pubmed.ncbi.nlm.nih.gov/19741297/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752072/

Gallo MP, Femminò S, Antoniotti S, Querio G, Alloatti G, Levi R. Catestatin Induces Glucose Uptake and GLUT4 Trafficking in Adult Rat Cardiomyocytes. Biomed Res Int. 2018; 2018:2086109. DOI: 10.1155/2018/2086109

View at:

Publisher Site: https://www.hindawi.com/journals/bmri/2018/2086109/

PubMed: https://pubmed.ncbi.nlm.nih.gov/30370303/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189662/

Li DT, Habtemichaela EN, Julca O, Sales CI, Westergaard XO, DeVries SG, Ruiz D, Sayal B, Bogan JS. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking. Yale J Biol Med. 2019; 92(3):453-470.

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/31543708/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747935/

Zhang X, Jiang L, Liu H. Forkhead Box Protein O1: Functional Diversity and Post-Translational Modification, a New Therapeutic Target? Drug Des Devel Ther. 2021; 15:1851-1860. DOI: 10.2147/DDDT.S305016

View at:

Publisher Site: https://www.dovepress.com/forkhead-box-protein-o1-functional-diversity-and-post-translational-mo-peer-reviewed-fulltext-article-DDDT

PubMed: https://pubmed.ncbi.nlm.nih.gov/33976536/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106445/

Mahata SK, Mahata S, Pasqua T, Avolio E, Tang K, Bandyopadhyay G, Webster NJG. Catestatin regulates core bioenergetic and metabolic functions of the myocardium. FASEB J. 2022; 36(S1). DOI: 10.1096/fasebj.2022.36.S1.R3297

View at:

Publisher Site: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.2022.36.S1.R3297

Borovac JA, Glavas D, Grabovac ZS, Domic DS, D’Amario D, Bozic J. Catestatin in Acutely Decompensated Heart Failure Patients: Insights from the CATSTAT-HF Study. Clin Med. 2019; 8(8):1132. DOI: 10.3390/jcm8081132

View at:

Publisher Site: https://www.mdpi.com/2077-0383/8/8/1132

PubMed: https://pubmed.ncbi.nlm.nih.gov/31366074/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722699/

Simunovic M, Supe-Domic D, Karin Z, Degoricija M, Paradzik M, Bozic J, Unic I, Skrabic V. Serum catestatin concentrations are decreased in obese children and adolescents. Pediatr diabetes. 2019; 20(5):549-555. DOI: 10.1111/pedi.12825

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1111/pedi.12825

PubMed: https://pubmed.ncbi.nlm.nih.gov/30714297/

Bandyopadhyay GK, Vu CU, Gentile S, Lee H, Biswas N, Chi N-W, O'Connor DT, Mahata SK. Catestatin (Chromogranin A352–372) and Novel Effects on Mobilization of Fat from Adipose Tissue through Regulation of Adrenergic and Leptin Signaling. J Biol Chem. 2012; 287(27):23141-23151. DOI: 10.1074/jbc.M111.335877

View at:

Publisher Site: https://www.jbc.org/article/S0021-9258(20)43485-4/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/22535963/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391131/

Kim SJ, Tang T, Abbott M, Viscarra JA, Wang Y, Sul HS. AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue. Mol Cell Biol. 2016; 36(14):1961-1976. DOI: 10.1128/MCB.00244-16

View at:

Publisher Site: https://journals.asm.org/doi/10.1128/MCB.00244-16

PubMed: https://pubmed.ncbi.nlm.nih.gov/27185873/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936063/

Dominguez Rieg JA, Chirasani VR, Koepsell H, Senapati S, Mahata SK, Rieg T. Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. Lab Invest. 2016; 96(1):98-111. DOI: 10.1038/labinvest.2015.129

View at:

Publisher Site: https://www.nature.com/articles/labinvest2015129

PubMed: https://pubmed.ncbi.nlm.nih.gov/26552046/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695279/

Mohseni S, Emtenani S, Emtenani S, Asoodeh A. Antioxidant properties of a human neuropeptide and its protective effect on free radical-induced DNA damage. J Pept Sci. 2014; 20(6):429-437. DOI: 10.1002/psc.2634

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/psc.2634

PubMed: https://pubmed.ncbi.nlm.nih.gov/24723458/

O’Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ. Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens. 2002; 20(7):1335-1345. DOI: 10.1097/00004872-200207000-00020

View at:

Publisher Site: https://journals.lww.com/jhypertension/Abstract/2002/07000/Early_decline_in_the_catecholamine.20.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/12131530/

Xu W, Yu H, Wu H, Li S, Chen B, Gao W. Plasma Catestatin in Patients with Acute Coronary Syndrome. Cardiology. 2017; 136(3):164-169. DOI: 10.1159/000448987

View at:

Publisher Site: https://www.karger.com/Article/Abstract/448987

PubMed: https://pubmed.ncbi.nlm.nih.gov/27681934/

Borovac JA, Dogas Z, Supe-Domic D, Galic T, Bozic J. Catestatin serum levels are increased in male patients with obstructive sleep apnea. Sleep Breath. 2019; 23(2):473-481. DOI: 10.1007/s11325-018-1703-x

View at:

Publisher Site: https://link.springer.com/article/10.1007/s11325-018-1703-x

PubMed: https://pubmed.ncbi.nlm.nih.gov/30088239/

Luketin M, Mizdrak M, Boric-Skaro D, Martinovic D, Tokic D, Vilovic M, Supe-Domic D, Kurir TT, Bozic J. Plasma Catestatin Levels and Advanced Glycation End Products in Patients on Hemodialysis. Biomolecules. 2021; 11(3):456. DOI: 10.3390/biom11030456

View at:

Publisher Site: https://www.mdpi.com/2218-273X/11/3/456

PubMed: https://pubmed.ncbi.nlm.nih.gov/33803864/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003327/

Mele M, Avolio E, Alò R, Fazzari G, Mahata SK, Canonaco M. Catestatin and orexin-A neuronal signals alter feeding habits in relation to hibernating states. Neuroscience. 2014; 269:331-342. DOI: 10.1016/j.neuroscience.2014.03.065

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0306452214002887

PubMed: https://pubmed.ncbi.nlm.nih.gov/24721733/

Sun H, Xian W, Geng L, Li E, Peng Z, Tian J. Increased plasma level of catestatin might be associated with poor prognosis in hemodialysis patients. Int Urol Nephrol. 2017; 49(6):1063-1069. DOI: 10.1007/s11255-017-1528-8

View at:

Publisher Site: https://link.springer.com/article/10.1007/s11255-017-1528-8

PubMed: https://pubmed.ncbi.nlm.nih.gov/28161844/

Tinti F, Lai S, Noce A, Rotondi S, Marrone G, Mazzaferro S, Daniele ND, Mitterhofer AP. Chronic Kidney Disease as a Systemic Inflammatory Syndrome: Update on Mechanisms Involved and Potential Treatment. Life. 2021; 11(5):419. DOI: 10.3390/life11050419

View at:

Publisher Site: https://www.mdpi.com/2075-1729/11/5/419

PubMed: https://pubmed.ncbi.nlm.nih.gov/34063052/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147921/

Bandyopadhyay GK, Mahata SK. Chromogranin A Regulation of Obesity and Peripheral insulin Sensitivity. Front Endocrinol. (Lausanne). 2017; 8:20. DOI: 10.3389/fendo.2017.00020

View at:

Publisher Site: https://www.frontiersin.org/articles/10.3389/fendo.2017.00020/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/28228748/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296320/

Mahapatra NR, O’Connor DT, Vaingankar SM, Hikim APS, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest. 2005; 115(7):1942-1952. DOI: 10.1172/JCI24354

View at:

Publisher Site: https://www.jci.org/articles/view/24354

PubMed: https://pubmed.ncbi.nlm.nih.gov/16007257/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1159140/

Durakoğlugil ME, Ayaz T, Kocaman SA, Kırbaş A, Durakoğlugil T, Erdoğan T, Çetin M, Şahin OZ, Çiçek Y. The relationship of plasma catestatin concentrations with metabolic and vascular parameters in untreated hypertensive patients: Influence on high-density lipoprotein cholesterol. Anatol J Cardiol. 2015; 15(7):577-585. DOI: 10.5152/akd.2014.5536

View at:

Publisher Site: https://www.anatoljcardiol.com//en/the-relationship-of-plasma-catestatin-concentrations-with-metabolic-and-vascular-parameters-in-untreated-hypertensive-patients-influence-on-high-density-lipoprotein-cholesterol-131708

PubMed: https://pubmed.ncbi.nlm.nih.gov/25538000/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337039/

Verghese PB, Arrese EL, Soulages JL. Stimulation of lipolysis enhances the rate of cholesterol efflux to HDL in adipocytes. Mol Cell Biochem. 2007; 302(1-2):241-248. DOI: 10.1007/s11010-007-9447-0

View at:

Publisher Site: https://link.springer.com/article/10.1007/s11010-007-9447-0

PubMed: https://pubmed.ncbi.nlm.nih.gov/17390217/

Zhang Y, McGillicuddy FC, Hinkle CC, O'Neill S, Glick JM, Rothblat GH, Reilly MP. Adipocyte modulation of high-density lipoprotein cholesterol. Circulation. 2010; 121(11):1347-1355. DOI: 10.1161/CIRCULATIONAHA.109.897330

View at:

Publisher Site: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.897330

PubMed: https://pubmed.ncbi.nlm.nih.gov/20212278/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925122/

Kim J, Lee S, Bhattacharjee R, Khalyfa A, Kheirandish-Gozal L, Gozal D. Leukocyte telomere length and plasma catestatin and myeloid-related protein 8/14 concentrations in children with obstructive sleep apnea. Chest. 2010; 138(1):91-99. DOI: 10.1378/chest.09-2832

View at:

Publisher Site: https://journal.chestnet.org/article/S0012-3692(10)60352-2/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/20299626/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897695/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.