THE RESULTS OF THE SEARCH FOR LABORATORY SIGNS OF AUTOIMMUNE REACTIONS TO CEREBRAL AND EXTRACEREBRAL AUTOANTIGENS IN CHILDREN WITH AUTISM SPECTRUM DISORDERS ASSOCIATED WITH GENETIC DEFICIENCY OF THE FOLATE CYCLE
Article PDF (Українська)

Keywords

herpesviruses, Streptococcus, PANDAS, autoimmune limbic encephalitis, antinuclear autoantibodies

Abstract views: 44
PDF Downloads: 25

How to Cite

Maltsev, D. (2021). THE RESULTS OF THE SEARCH FOR LABORATORY SIGNS OF AUTOIMMUNE REACTIONS TO CEREBRAL AND EXTRACEREBRAL AUTOANTIGENS IN CHILDREN WITH AUTISM SPECTRUM DISORDERS ASSOCIATED WITH GENETIC DEFICIENCY OF THE FOLATE CYCLE. Medical Science of Ukraine (MSU), 17(3), 22-37. https://doi.org/10.32345/2664-4738.3.2021.03

Abstract

Relevance. The results of five meta-analyzes of randomized controlled clinical trials indicate an association between genetic deficiency of the folate cycle (GDFC) and autism spectrum disorders (ASD) in children. Autoimmune mechanisms play a special role in the pathogenesis of encephalopathy in children with ASD associated with GDFC.

Objective: to study the structure of autoimmune reactions in children with ASD associated with GDFC, according to the accumulated evidence base and to identify associations of laboratory signs of autoimmunity and microorganisms to improve understanding of encephalopathy pathogenesis and diagnostic, monitoring and treatment algorithms.

Materials and methods. The medical data of 225 children aged 2 to 9 years with GDFC, who had clinical manifestations of ASD (183 boys and 42 girls) were retrospectively analyzed. The diagnosis of ASD was made by child psychiatrists according to the criteria DSM-IV-TR (Diagnostic and Statistical Manual of mental disorders) and ICD-10 (The International Statistical Classification of Diseases and Related Health Problems) (study group; SG). The control group (CG) included 51 clinically healthy children (37 boys and 14 girls) of similar age and gender distribution who did not suffer from GDFC and ASD.

Pathogenic polymorphic variants of folate cycle genes were determined by PCR with restriction (Sinevo, Ukraine). Autoantibodies to autoantigens of CNS subcortical ganglion neurons in blood serum were determined using a Cunningham panel (Moleculera Labs, Inc, USA). Serum autoantibodies to neurons of the mesolimbic system of the brain were identified by ELISA (MDI Limbach Berlin GmbH, Germany). Autoimmunization to myelin was assessed by serum autoantibody titer to basic myelin protein (ELISA) and signs of neutrophil and CD8+ T-lymphocyte sensitization to hemispheric white matter autoantigens (cell-based assay; department of neuroimmunology at the Neurosurgery Institute; Ukraine). Serum autoantibodies to nuclei of connective tissue cells and striated muscle proteins were determined by western blot analysis (Sinevo, Ukraine).

To determine the significance of the differences between the indicators in the observation groups, we used the Student's parametric T-test with the confidence probability p and the nonparametric criterion – the number of signs Z according to Urbach Yu.V. The odds ratio (OR) and the 95% confidence interval (95% CI) were used to study the associations between the studied indicators.

The study was performed as a fragment of research work commissioned by the Ministry of Health of Ukraine (№ state registration 0121U107940).

Research. Positive results of the Cunningham panel occurred in 32%, laboratory signs of autoimmunization to neurons of the mesolimbic system – 36%, myelin of white matter of the hemispheres – 43%, nuclei autoantigens of connective tissue cells – 53%, proteins of striated muscles – 48% of cases among children SG (in general – 68% of cases; p < 0.05; Z < Z0.05). Serological signs of autoimmunization to autoantigens of the subcortical ganglia of the cerebral hemispheres were associated with Streptococcus pyogenes and Borrelia, to neurons of the mesolimbic system – EBV, HHV-6, HHV-7, Toxoplasma and TTV, to CNS myelin – EBV, HHV-6, HHV-7, Borrelia and TTV, to the nuclei of connective tissue cells and striated muscles – EBV, HHV-6, HHV-7, Borrelia and TTV.

Conclusions. In children with ASD associated with GDFC laboratory sings of microbial-induced autoimmunity to a number of cerebral and extracerebral autoantigens has been evaluated, which affects the mental and physical health of patients and is a potential target for effective therapeutic interventions.

https://doi.org/10.32345/2664-4738.3.2021.03
Article PDF (Українська)

References

Almohmeed YH, Avenell A, Aucott L, Vickers MA. Systematic review and meta-analysis of the sero-epidemiological association between Epstein Barr virus and multiple sclerosis. PLoS One. 2013;8(4):e61110. DOI: 10.1371/journal.pone.0061110.

View at:

Publisher Site: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061110

PubMed: https://pubmed.ncbi.nlm.nih.gov/23585874/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621759/

Borkosky SS, Whitley C, Kopp-Schneider A, Hausen H, de Villiers E-M. Epstein-Barr virus stimulates torque teno virus replication: a possible relationship to multiple sclerosis. PLoS One. 2012; 7(2): e32160. DOI: 10.1371/journal.pone.0032160.

View at:

Publisher Site: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032160

PubMed: https://pubmed.ncbi.nlm.nih.gov/22384166/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285200/

Broccolo F, Drago F, Cassina G, Fava A, Fusetti L, Matteoli B, Ceccherini-Nelli L, Sabbadini MG, Lusso P, Parodi A, Malnati MS. Selective reactivation of human herpesvirus 6 in patients with autoimmune connective tissue diseases. J. Med. Virol. 2013; 85(11): 1925-34. DOI: 10.1002/jmv.23670

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/jmv.23670

PubMed: https://pubmed.ncbi.nlm.nih.gov/23983182/

Budhram A, Leung A, Nicolle MW, Burneo JG. Diagnosing autoimmune limbic encephalitis. CMAJ. 2019; 191(19): E529-E534. DOI: 10.1503/cmaj.181548.

View at:

Publisher Site: https://www.cmaj.ca/content/191/19/E529

PubMed: https://pubmed.ncbi.nlm.nih.gov/31085562/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520067/

Cabanlit M, Wills S, Goines P, Ashwood P, Van de Water J. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann. N. Y. Acad. Sci. 2007; 107: 92-103. DOI: 10.1196/annals.1381.010.

View at:

Publisher Site: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1196/annals.1381.010

PubMed: https://pubmed.ncbi.nlm.nih.gov/17804536/

Cai X, Zhou H, Xie Y, Yu D, Wang Z, Ren H. Anti-N-methyl-D-aspartate receptor encephalitis associated with acute Toxoplasma gondii infection: A case report. Medicine (Baltimore). 2018; 97(7): e9924. DOI: 10.1097/MD.0000000000009924.

View at:

Publisher Site: https://journals.lww.com/md-journal/Fulltext/2018/02160/Anti_N_methyl_D_aspartate_receptor_encephalitis.47.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/29443773/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5839864/

Dop D, Marcu IR, Padureanu R, Niculescu CE, Padureanu V. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Exp. Ther. Med. 2021; 21(1): 94. DOI: 10.3892/etm.2020.9526.

View at:

Publisher Site: https://www.spandidos-publications.com/10.3892/etm.2020.9526

PubMed: https://pubmed.ncbi.nlm.nih.gov/33363605/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725005/

Frye RE, Sequeira JM, Quadros EV, James SJ, Rossignol DA. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry. 2013; 18(3): 369-81. DOI:10.1038/mp.2011.175

View at:

Publisher Site: https://www.nature.com/articles/mp2011175

PubMed: https://pubmed.ncbi.nlm.nih.gov/22230883/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578948/

Fujinami RS. Molecular mimicry that primes for autoimmunity which is triggered by infection. Mol. Psychiatry. 2002; 7(2): S32-33. DOI: 10.1038/sj.mp.4001173

View at:

Publisher Site: https://www.nature.com/articles/4001173?proof=t+target%3D

Gesundheit B, Rosenzweig JP, Naor D, Lerer B, Zachor DA, Procházka V, Melamed M, Kristt DA, Steinberg A, Shulman C, Hwang P, Koren G, Walfisch A, Passweg JR, Snowden JA, Tamouza R, Leboyer M, Farge-Bancel D, Ashwood P. Immunological and autoimmune considerations of Autism Spectrum Disorders. J. Autoimmun. 2013; 44: 1-7. DOI: 10.1016/j.jaut.2013.05.005

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0896841113000735?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/23867105/

Gonzalez-Gronow M, Cuchacovich M, Francos R, Cuchacovich S, Blanco A, Sandoval R, Gomez CF, Valenzuela JA, Ray R, Pizzo SV. Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus. J. Neuroimmunol. 2015; 287: 1-8. DOI: 10.1016/j.jneuroim.2015.07.006

View at:

Publisher Site: https://www.jni-journal.com/article/S0165-5728(15)30008-4/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/26439953/

González-Toro MC, Jadraque-Rodríguez R, Sempere-Pérez Á, Martínez-Pastor P, Jover-Cerdá J, Gómez-Gosálvez F. [Anti-NMDA receptor encephalitis: two paediatric cases]. Rev. Neurol. 2013; 57(11): 504-8. [in Spanish]

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/24265144/

Harberts E, Yao K, Wohler JE, Maric D, Ohayon J, Henkin R, Jacobson S. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc. Natl. Acad. Sci USA. 2011; 108(33): 13734-9. DOI: 10.1073/pnas.1105143108.

View at:

Publisher Site: https://www.pnas.org/content/108/33/13734

PubMed: https://pubmed.ncbi.nlm.nih.gov/21825120/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158203/

Hughes HK, Ko EM, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci. 2018; 12: 405. DOI: 10.3389/fncel.2018.00405.

View at:

Publisher Site: https://www.frontiersin.org/articles/10.3389/fncel.2018.00405/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/30483058/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242891/

Kiani R, Lawden M, Eames P, Critchley P, Bhaumik S, Odedra S, Gumber R. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism. BJ Psych. Bull. 2015; 39(1): 32-5. DOI: 10.1192/pb.bp.112.041954.

View at:

Publisher Site: https://www.cambridge.org/core/journals/bjpsych-bulletin/article/antinmdareceptor-encephalitis-presenting-with-catatonia-and-neuroleptic-malignant-syndrome-in-patients-with-intellectual-disability-and-autism/A730ADD66527D49A0C8B8FDA64D1F806

PubMed: https://pubmed.ncbi.nlm.nih.gov/26191422/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495827/

Li Y, Qiu S, Shi J, Guo Y, Li Z, Cheng Y, Liu Y. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr. 2020; 20(1): 449. DOI: 10.1186/s12887-020-02330-3.

View at:

Publisher Site: https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-020-02330-3

PubMed: https://pubmed.ncbi.nlm.nih.gov/32972375/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517654/

Li ZX, Zeng S, Wu HX, Zhou Y. The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection: a systematic review and meta-analysis. Clin. Exp. Med. 2019; 19(1): 23-36. DOI: 10.1007/s10238-018-0535-0.

View at:

Publisher Site: https://link.springer.com/article/10.1007%2Fs10238-018-0535-0

PubMed: https://pubmed.ncbi.nlm.nih.gov/30361847/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394567/

Linnoila JJ, Binnicker MJ, Majed M, Klein CJ, McKeon A. CSF herpes virus and autoantibody profiles in the evaluation of encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2016; 3(4): e245. DOI: 10.1212/NXI.0000000000000245.

View at:

Publisher Site: https://nn.neurology.org/content/3/4/e245

PubMed: https://pubmed.ncbi.nlm.nih.gov/27308306/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897981/

Maltsev D, Natrus L. [The effectiveness of infliximab in autism spectrum disorders associated with folate cycle genetic deficiency]. Psychiatry, Psychotherapy and Clinical Psychology. 2020; 11(3): 583-94. [in Russian]

View at:

Publisher Site: https://psihea.recipe.by/ru/?editions=2020-tom-11-n-3

URL: https://psihea.recipe.by/ru/?editions=2020-tom-11-n-3&group_id=item_1&article_id=line_3

Maltsev DV. [High-dose i/v immunoglobulin therapy efficiency in children with autism spectrum disorders associated with genetic deficiency of folate cycle enzymes]. Likarsʹka Sprava. 2017; (8): 8-24. [in Russian]

View at:

Publisher Site: https://liksprava.com/index.php/journal/article/view/126

Marchezan J, Winkler Dos Santos EA, Deckmann I, Dos Santos Riesgo R. Immunological Dysfunction in Autism Spectrum Disorder: A Potential Target for Therapy. Neuroimmunomodulation. 2018; 25(5-6): 300-19. DOI: 10.1159/000492225.

View at:

Publisher Site: https://www.karger.com/Article/FullText/492225

PubMed: https://pubmed.ncbi.nlm.nih.gov/30184549/

Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol. Psychiatry. 2015; 20(4): 440-6. DOI: 10.1038/mp.2014.59

View at:

Publisher Site: https://www.nature.com/articles/mp201459

PubMed: https://pubmed.ncbi.nlm.nih.gov/24934179/

Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol. Lett. 2015; 163(1): 49-55. DOI: 10.1016/j.imlet.2014.11.006.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0165247814002600?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/25448709/

Mohammad NS, Shruti PS, Bharathi V, Prasad CK, Hussain T, Alrokayan SA, Naik U, Devi ARR. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr. Genet. 2016; 26(6): 281-6. DOI: 10.1097/YPG.0000000000000152.

View at:

Publisher Site: https://journals.lww.com/psychgenetics/Abstract/2016/12000/Clinical_utility_of_folate_pathway_genetic.5.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/27755291/

Monge-Galindo L, Pérez-Delgado R, López-Pisón J, Lafuente-Hidalgo M, Olmo-Izuzquiza IR, Peña-Segura JL. [Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19-year period]. Rev. Neurol. 2010; 50(6): 341-8. [in Spanish]

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/20309832/

Mora M, Quintero L, Cardenas R, Suárez-Roca H, Zavala M, Montiel N. [Association between HSV-2 infection and serum anti-rat brain antibodies in patients with autism]. Invest. Clin. 2009; 50(3): 315-26. [in Spanish]

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/19961054/

Mostafa GA, Al-Ayadhi LY. Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity. J. Neuroinflammation. 2011; 8(1): 39. DOI:10.1186/1742-2094-8-39

View at:

Publisher Site: https://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-8-39

PubMed: https://pubmed.ncbi.nlm.nih.gov/21513576/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104945/

Naghibalhossaini F, Ehyakonandeh H, Nikseresht A, Kamali E. Association Between MTHFR Genetic Variants and Multiple Sclerosis in a Southern Iranian Population. Int. J. Mol. Cell. Med. 2015; 4(2): 87-93.

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/26261797/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499570/

Nepal G, Shing KY, Yadav JK, Rehrig JH, Ojha R, Huang DY, Gajurel BP. Efficacy and safety of rituximab in autoimmune encephalitis: A meta-analysis. Acta Neurol. Scand. 2020; 142(5): 449-59. DOI: 10.1111/ane.13291.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1111/ane.13291

PubMed: https://pubmed.ncbi.nlm.nih.gov/32484900/

Nicolson GL, Gan R, Nicolson NL, Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders. J. Neurosci Res. 2007; 85(5): 1143-8. DOI: 10.1002/jnr.21203

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/jnr.21203

PubMed: https://pubmed.ncbi.nlm.nih.gov/17265454/

Perlejewski K, Pawełczyk A, Bukowska-Ośko I, Rydzanicz M, Dzieciątkowski T, Paciorek M, Makowiecki M, Cortés KC, Grochowska M, Radkowski M, Laskus T. Search for Viral Infections in Cerebrospinal Fluid From Patients With Autoimmune Encephalitis. Open Forum Infect. Dis. 2020; 7(11): ofaa468. DOI: 10.1093/ofid/ofaa468.

View at:

Publisher Site: https://academic.oup.com/ofid/article/7/11/ofaa468/5919166

PubMed: https://pubmed.ncbi.nlm.nih.gov/33209955/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643957/

Pormohammad A, Azimi T, Falah F, Faghihloo E. Relationship of human herpes virus 6 and multiple sclerosis: A systematic review and meta-analysis. J. Cell Physiol. 2018; 233(4): 2850-62. DOI: 10.1002/jcp.26000.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/jcp.26000

PubMed: https://pubmed.ncbi.nlm.nih.gov/28631829/

Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 2013; 6(5): 384-92. DOI: 10.1002/aur.1300.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/aur.1300

PubMed: https://pubmed.ncbi.nlm.nih.gov/23653228/

Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab. Brain Dis. 2016; 31(4): 727-35. DOI: 10.1007/s11011-016-9815-0.

View at:

Publisher Site: https://link.springer.com/article/10.1007%2Fs11011-016-9815-0

PubMed: https://pubmed.ncbi.nlm.nih.gov/26956130/

Rhee H, Cameron DJ. Lyme disease and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS): an overview. Int. J. Gen. Med. 2012; 5: 163-74. DOI: 10.2147/IJGM.S24212.

View at:

Publisher Site: https://www.dovepress.com/lyme-disease-and-pediatric-autoimmune-neuropsychiatric-disorders-assoc-peer-reviewed-fulltext-article-IJGM

PubMed: https://pubmed.ncbi.nlm.nih.gov/22393303/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292400/

Rout UK, Mungan NK, Dhossche DM. Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. Eur. Child. Adolesc. Psychiatry. 2012; 21(3): 141-7. DOI: 10.1007/s00787-012-0245-1

View at:

Publisher Site: https://link.springer.com/article/10.1007/s00787-012-0245-1

PubMed: https://pubmed.ncbi.nlm.nih.gov/22323074/

Saberi A, Akhondzadeh S, Kazemi S. Infectious agents and different course of multiple sclerosis: a systematic review. Acta Neurol. Belg. 2018; 118(3): 361-77. DOI: 10.1007/s13760-018-0976-y.

View at:

Publisher Site: https://link.springer.com/article/10.1007%2Fs13760-018-0976-y

PubMed: https://pubmed.ncbi.nlm.nih.gov/30006858/

Sadeghiyeh T, Dastgheib SA, Mirzaee-Khoramabadi K, Morovati-Sharifabad M, Akbarian-Bafghi MJ, Poursharif Z, Mirjalili SR, Neamatzadeh H. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian J Psychiatr. 2019; 46: 54-61. DOI: 10.1016/j.ajp.2019.09.016.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S1876201819303260?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/31614268/

Saghazadeh A, Ataeinia B, Keynejad K, Abdolalizadeh A, Hirbod-Mobarakeh A, Rezaei N. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. J. Psychiatr. Res. 2019; 115: 90-102. DOI: 10.1016/j.jpsychires.2019.05.019

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0022395619301542?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/31125917/

Salimi S, Keshavarzi F, Mohammadpour-Gharehbagh A, Moodi M, Mousavi M, Karimian M, Sandoughi M. Polymorphisms of the folate metabolizing enzymes: Association with SLE susceptibility and in silico analysis. Gene. 2017; 637: 161-72. DOI: 10.1016/j.gene.2017.09.037.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0378111917307552?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/28943344/

Santoro JD, Hemond CC. Human herpesvirus 6 associated post-transplant acute limbic encephalitis: Clinical observations of biomarkers for risk of seizure in a pediatric population. Transpl. Infect. Dis. 2019; 21(1): e13003. DOI: 10.1111/tid.13003.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1111/tid.13003

PubMed: https://pubmed.ncbi.nlm.nih.gov/30256500/

Schwenkenbecher P, Skripuletz T, Lange P, Dürr M, Konen FF, Möhn N, Ringelstein M, Menge T, Friese MA, Melzer N, Malter MP, Häusler M, Thaler FS, Stangel M, Lewerenz J, Sühs K-W. Intrathecal Antibody Production Against Epstein-Barr, Herpes Simplex, and Other Neurotropic Viruses in Autoimmune Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2021; 8(6): e1062. DOI: 10.1212/NXI.0000000000001062.

View at:

Publisher Site: https://nn.neurology.org/content/8/6/e1062

PubMed: https://pubmed.ncbi.nlm.nih.gov/34429365/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387013/

Shimasaki C, Frye RE, Trifiletti R, Cooperstock M, Kaplan G, Melamed I, Greenberg R, Katz A, Fier E, Kem D, Traver D, Dempsey T, Latimer ME, Cross A, Dunn JP, Bentley R, Alvarez K, Reim S, Appleman J. Evaluation of the Cunningham Panel in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): Changes in antineuronal antibody titers parallel changes in patient symptoms. J. Neuroimmunol. 2020; 339: 577138. DOI: 10.1016/j.jneuroim.2019.577138.

View at:

Publisher Site: https://linkinghub.elsevier.com/retrieve/pii/S0165572819303522

PubMed: https://pubmed.ncbi.nlm.nih.gov/31884258/

Singh VK, Lin SX, Newell E, Nelson C. Abnormal measles-mumps-rubella antibodies and CNS autoimmunity in children with autism. J. Biomed. Sci. 2002; 9(4): 359-64. DOI: 10.1007/BF02256592

View at:

Publisher Site: https://link.springer.com/article/10.1007%2FBF02256592

PubMed: https://pubmed.ncbi.nlm.nih.gov/12145534/

Singh VK, Lin SX, Yang VC. Serological association of measles virus and human herpesvirus-6 with brain autoantibodies in autism. Clin. Immunol. Immunopathol. 1998; 89(1): 105-8. DOI: 10.1006/clin.1998.4588

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0090122998945883?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/9756729/

Venâncio P, Brito MJ, Pereira G, Vieira JP. Anti-N-methyl-D-aspartate receptor encephalitis with positive serum antithyroid antibodies, IgM antibodies against mycoplasma pneumoniae and human herpesvirus 7 PCR in the CSF. Pediatr. Infect. Dis. J. 2014; 33(8): 882-3. DOI: 10.1097/INF.0000000000000408.

View at:

Publisher Site: https://journals.lww.com/pidj/Fulltext/2014/08000/Anti_N_methyl_D_aspartate_Receptor_Encephalitis.26.aspx

PubMed: https://pubmed.ncbi.nlm.nih.gov/25222311/

Vojdani A, Campbell AW, Anyanwu E, Kashanian A, Bock K, Vojdani E. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A // J. Neuroimmunol. 2002; 129(1-2): 168-77. DOI: 10.1016/s0165-5728(02)00180-7

View at:

Publisher Site: https://www.jni-journal.com/article/S0165-5728(02)00180-7/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/12161033/

Zheng Q, Zhu K, Gao CN, Xu Y-P, Lu M-P. Prevalence of Epstein-Barr virus infection and characteristics of lymphocyte subsets in newly onset juvenile dermatomyositis. World J. Pediatr. 2021; 17(2): 205-9. DOI: 10.1007/s12519-019-00314-7.

View at:

Publisher Site: https://link.springer.com/article/10.1007%2Fs12519-019-00314-7

PubMed: https://pubmed.ncbi.nlm.nih.gov/31549298/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.