ACTIVITY OF ANGIOTENSIN-CONVERSING ENZYME-2 IN ACUTE PULMONARY INFLAMMATION
Article PDF (Українська)

Keywords

experimental bronchopneumonia, angiotensin-converting enzyme-2, immunohistochemistry

Abstract views: 30
PDF Downloads: 24

How to Cite

Ziablitsev , D., Dyadyk , O., & Ziablitsev, S. (2021). ACTIVITY OF ANGIOTENSIN-CONVERSING ENZYME-2 IN ACUTE PULMONARY INFLAMMATION. Medical Science of Ukraine (MSU), 17(3), 3-14. https://doi.org/10.32345/2664-4738.3.2021.01

Abstract

Relevance. Angiotensin converting enzyme-2 (ACE2), which is the gateway to coronavirus, is also an important component of the tissue renin-angiotensin system with a number of anti-inflammatory effects. It is known that ACE2 is expressed in the lungs of patients with coronavirus pneumonia, but it is not clear how this depends on the stages of development and the severity of inflammation.

Objective: to establish the effect of acute inflammation on pulmonary expression of angiotensin-converting enzyme-2.

Material and methods. In Wistar rats (n=20), in compliance with bioethical standards, a sterile nylon thread 2.5 cm long and 0.2 mm thick to a depth of 2.5 cm was introduced into the trachea. The animals were observed and removed from the experiment at 7, 14, 21 and 28 days, microscopic and immunohistochemical (monoclonal antibodies against ACE2; clone 4G5.1; EMD Millipore Corporation; Temecula, CA US) studies were performed.

Results. The microscopic picture of the lungs indicated the development of acute bronchopulmonary inflammation during the first week, the formation of peribronchial and alveolar abscesses in the second week with the onset of resolution of bronchopneumonia with the organization of abscesses in the third week and the development of diffuse fibrosis of the parenchyma and vascular hyalinosis in the fourth week of observation. The exudative phase of acute inflammation was accompanied by inhibition of ACE2 activity in bronchial epithelial cells, type II alveolocytes and vascular endothelium. With the transition of inflammation to the stage of proliferation and fibrosis, ACE2 activity was restored.

Conclusion. The detected phase change in ACE2 activity can cause a wavy recurrent course of coronavirus infection, since an increase in the amount of ACE2 protein during attenuation of acute inflammation contributes to an increase in target cell infection.

https://doi.org/10.32345/2664-4738.3.2021.01
Article PDF (Українська)

References

Kubyshkin AV, Novikov N.Yu., Birkin AA, Nesterov EN. [Experimental model of acute lung injury]. Tavrichesky medical and biological bulletin. 2012;15(2) part 3(58):122-4. [in Russian]

View at:

NBUV: http://dspace.nbuv.gov.ua/handle/123456789/45178

URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/45178/27-Kubyshkin.pdf?sequence=1

Kubyshkin AV, Fomochkina II. Elastolytic activity of bronchoalveolar lavage in modeling the inflammatory process in the lungs. Ukrainian Biochemical Journal. 2008;80(1):89-95. [in Russian]

View at:

URL: http://ubj.biochemistry.org.ua/images/stories/pdf/2008/UBJ_N1_2008/Kubyshkin_80_1%20.pdf

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020 Jul 9;383(2):120-8. DOI: 10.1056/NEJMoa2015432.

View at:

Publisher Site: https://www.nejm.org/doi/10.1056/NEJMoa2015432

PubMed: https://pubmed.ncbi.nlm.nih.gov/32437596/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412750/

Cipolloni L, Sessa F, Bertozzi G, Baldari B, Cantatore S, Testi R, D'Errico S, Di Mizio G, Asmundo A, Castorina S, Salerno M, Pomara C. Preliminary Post-Mortem COVID-19 Evidence of Endothelial Injury and Factor VIII Hyperexpression. Diagnostics (Basel). 2020 Aug 9;10(8):575. DOI:10.3390/diagnostics10080575.

View at:

Publisher Site: https://www.mdpi.com/2075-4418/10/8/575

PubMed: https://pubmed.ncbi.nlm.nih.gov/32784826/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460315/

Damiani S, Fiorentino M, De Palma A, Foschini MP, Lazzarotto T, Gabrielli L, Viale PL, Attard L, Riefolo M, D'Errico A. Pathological post-mortem findings in lungs infected with SARS-CoV-2. J Pathol. 2021 Jan;253(1):31-40. DOI: 10.1002/path.5549.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/full/10.1002/path.5549

PubMed: https://pubmed.ncbi.nlm.nih.gov/32930394/

Descamps G, Verset L, Trelcat A, Hopkins C, Lechien JR, Journe F, Saussez S. ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection. Biology (Basel). 2020 Aug 18;9(8):235. DOI: 10.3390/biology9080235

View at:

Publisher Site: https://www.mdpi.com/2079-7737/9/8/235

PubMed: https://pubmed.ncbi.nlm.nih.gov/32824830/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465650/

Ehaideb SN, Abdullah ML, Abuyassin B, Bouchama A. Evidence of a wide gap between COVID-19 in humans and animal models: a systematic review. Critical care (London, England). 2020;24(1):594. DOI: 10.1186/s13054-020-03304-8.

View at:

Publisher Site: https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03304-8

PubMed: https://pubmed.ncbi.nlm.nih.gov/33023604/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537968/

Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CP, Hayden CDL, Fukuoka J, Taubenberger JK, Travis WD. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol. 2003;34:743-8. DOI: 10.1016/s0046-8177(03)00367-8.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0046817703003678?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/14506633/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7119137/

Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631-7. DOI: 10.1002/path.1570.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/path.1570

PubMed: https://pubmed.ncbi.nlm.nih.gov/15141377/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167720/

Hau J. Animal Models for Human Diseases. In: Conn P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press, 2008. DOI: 10.1007/978-1-59745-285-4_1

View at:

Publisher Site: https://link.springer.com/chapter/10.1007%2F978-1-59745-285-4_1

Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020 Jul;16(7):e9610. DOI: 10.15252/msb.20209610.

View at:

Publisher Site: https://www.embopress.org/doi/full/10.15252/msb.20209610

PubMed: https://pubmed.ncbi.nlm.nih.gov/32715618/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383091/

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten Ch, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271-80. DOI: 10.1016/j.cell.2020.02.052.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/pii/S0092867420302294

PubMed: https://pubmed.ncbi.nlm.nih.gov/32142651/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102627/

URL: https://www.cell.com/cell/pdf/S0092-8674%2820%2930229-4.pdf

Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005 Dec;79(23):14614-21. DOI: 10.1128/JVI.79.23.14614-14621.2005.

View at:

Publisher Site: https://journals.asm.org/doi/10.1128/JVI.79.23.14614-14621.2005

PubMed: https://pubmed.ncbi.nlm.nih.gov/16282461/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1287568/

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005 Aug;11(8):875-9. DOI: 10.1038/nm1267.

View at:

Publisher Site: https://www.nature.com/articles/nm1267

PubMed: https://pubmed.ncbi.nlm.nih.gov/16007097/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095783/

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215-20. DOI: 10.1038/s41586-020-2180-5.

View at:

Publisher Site: https://www.nature.com/articles/s41586-020-2180-5

PubMed: https://pubmed.ncbi.nlm.nih.gov/32225176/

Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity. 2019 Apr 16;50(4):907-23. DOI: 10.1016/j.immuni.2019.03.025.

View at:

Publisher Site: https://www.cell.com/immunity/fulltext/S1074-7613(19)30142-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1074761319301426%3Fshowall%3Dtrue

PubMed: https://pubmed.ncbi.nlm.nih.gov/30995506/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839410/

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-4. DOI: 10.1038/nature02145.

View at:

Publisher Site: https://www.nature.com/articles/nature02145

PubMed: https://pubmed.ncbi.nlm.nih.gov/14647384/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095016/

Liu MY, Zheng B, Zhang Y, Li JP. Role and mechanism of angiotensin-converting enzyme 2 in acute lung injury in coronavirus disease 2019. Chronic Dis Transl Med. 2020 Jun;6(2):98-105. DOI: 10.1016/j.cdtm.2020.05.003.

View at:

Publisher Site: https://www.sciencedirect.com/science/article/pii/S2095882X20300426?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/32550040/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236734/

Ortiz ME, Thurman A, Pezzulo AA, Leidinger MR, Klesney-Tait JA, Karp PH, Tan P, Wohlford-Lenane C, McCray PB Jr, Meyerholz DK. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. EBioMedicine. 2020 Oct;60:102976. DOI: 10.1016/j.ebiom.2020.102976.

View at:

Publisher Site: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30352-2/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/32971472/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505653/

Pan H, Huang W, Wang Z, Ren F, Luo L, Zhou J, Tian M, Tang L. The ACE2-Ang-(1 7)-Mas Axis Modulates M1/M2 Macrophage Polarization to Relieve CLP-Induced Inflammation via TLR4-Mediated NF-кb and MAPK Pathways. J Inflamm Res. 2021 May 20;14:2045-60. DOI: 10.2147/JIR.S307801.

View at:

Publisher Site: https://www.dovepress.com/the-ace2-ang-17-mas-axis-modulates-m1m2-macrophage-polarization-to-rel-peer-reviewed-fulltext-article-JIR

PubMed: https://pubmed.ncbi.nlm.nih.gov/34045880/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144186/

Sato T, Ueha R, Goto T, Yamauchi A, Kondo K, Yamasoba T. Expression of ACE2 and TMPRSS2 Proteins in the Upper and LowerAerodigestive Tracts of Rats: Implications on COVID 19 Infections. NALaryngoscope. 2021;131(3):E932-E939. DOI: 10.1002/lary.29132.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/lary.29132

PubMed: https://pubmed.ncbi.nlm.nih.gov/32940922/

Sturrock A, Zimmerman E, Helms M, Liou TG, Paine R 3rd. Hypoxia induces expression of angiotensin-converting enzyme II in alveolar epithelial cells: Implications for the pathogenesis of acute lung injury in COVID-19. Physiol Rep. 2021 May;9(9):e14854. DOI: 10.14814/phy2.14854.

View at:

Publisher Site: https://physoc.onlinelibrary.wiley.com/doi/full/10.14814/phy2.14854

PubMed: https://pubmed.ncbi.nlm.nih.gov/33991451/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123561/

Sui Y, Li J, Venzon DJ, Berzofsky JA. SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage. Front Immunol. 2021 Jun 4;12:658428. DOI: 10.3389/fimmu.2021.658428.

View at:

Publisher Site: https://www.frontiersin.org/articles/10.3389/fimmu.2021.658428/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/34149696/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213020/

Suster S, Moran AC. Biopsy interpretation of the lung. 1st ed. Lippincott Williams & Wilkins, Wolters Kluwer; 2013. 417 p.

View at:

Publisher Site: https://shop.lww.com/Biopsy-Interpretation-of-the-Lung/p/9781975136581

Vieira C, Nery L, Martins L, Jabour L, Dias R, Simões E Silva AC. Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Curr Drug Targets. 2021;22(3):254-81. DOI: 10.2174/1389450121666201020154033.

View at:

Publisher Site: https://www.eurekaselect.com/187037/article

PubMed: https://pubmed.ncbi.nlm.nih.gov/33081670/

Wiese O, Zemlin AE, Pillay TS. Molecules in pathogenesis: angiotensin converting enzyme 2 (ACE2). J Clin Pathol. 2021 May;74(5):285-90. DOI: 10.1136/jclinpath-2020-206954.

View at:

Publisher Site: https://jcp.bmj.com/content/74/5/285

PubMed: https://pubmed.ncbi.nlm.nih.gov/32759311/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409947/

Williams K, Roman J. Studying human respiratory disease in animals--role of induced and naturally occurring models. The Journal of pathology. 2016;238(2):220-32. DOI: 10.1002/path.4658.

View at:

Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/path.4658

PubMed: https://pubmed.ncbi.nlm.nih.gov/26467890/

PubMed Central:

Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J. 2020;34:6017-26. DOI: 10.1096/fj.202000782.

View at:

Publisher Site: https://faseb.onlinelibrary.wiley.com/doi/full/10.1096/fj.202000782

PubMed: https://pubmed.ncbi.nlm.nih.gov/32306452/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264803/

Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020 May 28;181(5):1016-35.e19. DOI: 10.1016/j.cell.2020.04.035.

View at:

Publisher Site: https://www.cell.com/cell/fulltext/S0092-8674(20)30500-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867420305006%3Fshowall%3Dtrue

PubMed: https://pubmed.ncbi.nlm.nih.gov/32413319/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252096/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.