PHYSIOLOGICAL MECHANISM OF FATIGUE. Review
Article PDF (Українська)

Keywords

central and peripheral fatigue, neurotransmitters, intellectual performance, physical performance, mechanisms of fatigue development

Abstract views: 46
PDF Downloads: 29

How to Cite

Marakusyn , D., Chernobay , L., Vaschuk , M., Isaieva, I., Karmazina , I., Mamon , M., & Holovko , M. (2021). PHYSIOLOGICAL MECHANISM OF FATIGUE. Review. Medical Science of Ukraine (MSU), 17(2), 125-131. https://doi.org/10.32345/2664-4738.2.2021.17

Abstract

Relevance. Fatigue, both intellectual and physical, reduces the efficiency of daily activities and quality of life, in addition, fatigue is one of the factors contributing to the development of various pathological conditions, such as cardiovascular disease and others. Therefore, it is important to understand the mechanisms underlying the development of fatigue, which will improve prevention and development.

Objective: to analyze the physiological and biochemical mechanisms underlying the development of fatigue.

Methods. Analysis of scientific publications of the international scientific database PubMed by keywords. The following research methods were used in writing the paper: systematization of material, analysis and generalization.

Results. In this article we discussed the physiological and biochemical mechanisms of fatigue. The correlation between fatigue and the general mental condition, physiological, biochemical processes, activity of neurotransmitters, intellectual and physical activity, food has been defined. The central and peripheral mechanisms of fatigue were considered. Central fatigue is divided into spinal and supraspinal and involves the neuromuscular junction. Peripheral fatigue occurs at the level of the muscles and mainly involves muscle bioenergetics or an excitation-contraction coupling.

Currently fatigue is considered as a general reaction to stress that lasts for a period of time, taken in an account the cumulative effects of days, weeks or months, and the effects of sleep disorders are also very important, because the effects of fatigue are closely linked to sleep deprivation. Therefore, the time required for recovery depends on the severity of fatigue. There are currently many research methods, such as electromyography, transcranial magnetic stimulation, magnetic resonance imaging, and spectroscopy, which are useful in undestending the physiological correlates of fatigue.

In turn, psychological, behavioral or physical triggers can have a beneficial effect against the development of acute fatigue and improve performance, as well as provide a better understanding of the function of neurotransmitters, physiological and biochemical processes important in the development of body fatigue in general.

https://doi.org/10.32345/2664-4738.2.2021.17
Article PDF (Українська)

References

Tanaka M, Watanabe Y. Supraspinal regulation of physical fatigue. Neurosci Biobehav Rev. 2012 Jan;36(1):727-34. DOI: 10.1016/j.neubiorev.2011.10.004.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0149763411001862?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/22040772/

Ickmans K, Meeus M, Kos D, Clarys P, Meersdom G, Lambrecht L, Pattyn N, Nijs J. Cognitive performance is of clinical importance, but is unrelated to pain severity in women with chronic fatigue syndrome. Clin Rheumatol. 2013 Oct;32(10):1475-85. DOI: 10.1007/s10067-013-2308-1.

View at:

Scopus: https://link.springer.com/article/10.1007/s10067-013-2308-1

PubMed: https://pubmed.ncbi.nlm.nih.gov/23737111/

Tanaka M, Ishii A, Watanabe Y. Fatigue in the Central Nervous System. Austin J Clin Neurol. 2015;2(1): 1020. ISSN : 2381-9154

View at:

Publisher site: https://austinpublishinggroup.com/clinical-neurology/fulltext/ajcn-v2-id1020.php

Chaudhuri A, Behan PO. Fatigue and basal ganglia. J Neurol Sci. 2000 Oct 1;179(S 1-2):34-42. DOI: 10.1016/s0022-510x(00)00411-1.

View at:

Publisher site: https://www.jns-journal.com/article/S0022-510X(00)00411-1/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/11054483/

Chaudhuri A, Behan PO. Fatigue in neurological disorders. Lancet. 2004 Mar 20;363(9413):978-88. DOI: 10.1016/S0140-6736(04)15794-2.

View at:

Scopus: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(04)15794-2/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/15043967/

Ishii A, Tanaka M, Watanabe Y. Neural mechanisms of mental fatigue. Rev Neurosci. 2014;25(4):469-79. DOI: 10.1515/revneuro-2014-0028.

View at:

Publisher site: https://www.degruyter.com/document/doi/10.1515/revneuro-2014-0028/html

PubMed: https://pubmed.ncbi.nlm.nih.gov/24926625/

Peltier SJ, LaConte SM, Niyazov DM, Liu JZ, Sahgal V, Yue GH, Hu XP. Reductions in interhemispheric motor cortex functional connectivity after muscle fatigue. Brain Res. 2005 Sep 28;1057(1-2):10-6. DOI: 10.1016/j.brainres.2005.06.078.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0006899305009625?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/16140287/

Filippi M, Rocca MA, Colombo B, Falini A, Codella M, Scotti G, Comi G. Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage. 2002 Mar;15(3):559-67. DOI: 10.1006/nimg.2001.1011.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S1053811901910110?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/11848698/

DeLuca J, Genova HM, Hillary FG, Wylie G. Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J Neurol Sci. 2008 Jul 15;270(1-2):28-39. DOI: 10.1016/j.jns.2008.01.018.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0022510X08000476

Publisher site: https://www.jns-journal.com/article/S0022-510X(08)00047-6/abstract

Europe PMC: https://europepmc.org/article/med/18336838

Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301-313. DOI: 10.1016/S0167-8760(00)00172-0

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0167876000001720

Publisher site: https://psycnet.apa.org/record/2000-14241-007

Europe PMC: https://europepmc.org/article/med/11102669

Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol. 1995 Sep;74(3):1037-45. DOI: 10.1152/jn.1995.74.3.1037.

View at:

Publisher site: https://journals.physiology.org/doi/abs/10.1152/jn.1995.74.3.1037

PubMed: https://pubmed.ncbi.nlm.nih.gov/7500130/

Laporte AM, Doyen C, Nevo IT, Chauveau J, Hauw JJ, Hamon M. Autoradiographic mapping of serotonin 5-HT1A, 5-HT1D, 5-HT2A and 5-HT3 receptors in the aged human spinal cord. J Chem Neuroanat. 1996;11(1):67-75. DOI: 10.1016/0891-0618(96)00130-5

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/0891061896001305?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/8841890/

Cordeiro L., Rabelo P, Moraes MM, Teixeira-Coelho F, Coimbra CC, Wanner SP, Soares DD. Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. Brazilian journal of medical and biological research. 2017; 50(12), e6432. DOI: 10.1590/1414-431X20176432

View at:

Publisher site: https://www.scielo.br/j/bjmbr/a/v7RQZtcwVMyJGRJvm7mnGxC/?lang=en

PubMed: https://pubmed.ncbi.nlm.nih.gov/29069229/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649871/

Fernstrom JD. Dietary amino acids and brain function. J Am Diet Assoc. 1994 Jan;94(1):71-7. DOI: 10.1016/0002-8223(94)92045-1.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/0002822394920451

Publisher site: https://jandonline.org/article/0002-8223(94)92045-1/abstract

PubMed: https://pubmed.ncbi.nlm.nih.gov/7903674/

Kennett GA, Curzon G, Hunt A, Patel AJ. Immobilization decreases amino acid concentrations in plasma but maintains or increases them in brain. J Neurochem. 1986 Jan;46(1):208-12. DOI: 10.1111/j.1471-4159.1986.tb12947.x

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.1986.tb12947.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/3940281/

Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RH. Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med. 1978 Jun;54(6):609-14. DOI: 10.1042/cs0540609.

View at:

Publisher site: https://portlandpress.com/clinsci/article-abstract/54/6/609/70900/Central-and-Peripheral-Fatigue-in-Sustained?redirectedFrom=fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/657729/

Brownstone RM, Krawitz S, Jordan LM. Reversal of the late phase of spike frequency adaptation in cat spinal motoneurons during fictive locomotion. Journal of neurophysiology. 2011; 105(3): 1045-1050. DOI: 10.1152/jn.00411.2010

View at:

Publisher site: https://journals.physiology.org/doi/full/10.1152/jn.00411.2010

PubMed: https://pubmed.ncbi.nlm.nih.gov/21177992/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061562/

Roelands B, Meeusen R. Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med. 2010 Mar 1;40(3):229-46. DOI: 10.2165/11533670-000000000-00000.

View at:

Scopus: https://link.springer.com/article/10.2165%2F11533670-000000000-00000

PubMed: https://pubmed.ncbi.nlm.nih.gov/20199121/

Hasegawa H, Piacentini MF, Sarre S, Michotte Y, Ishiwata T, Meeusen R. Influence of brain catecholamines on the development of fatigue in exercising rats in the heat. The Journal of physiology. 2008; 586(1): 141-149. DOI: 10.1113/jphysiol.2007.142190

View at:

Publisher site: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2007.142190

PubMed: https://pubmed.ncbi.nlm.nih.gov/17947314/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375558/

Heckman CJ, Enoka RM. Motor unit. Compr Physiol. 2012 Oct;2(4):2629-82. DOI: 10.1002/cphy.c100087.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/10.1002/cphy.c100087

PubMed: https://pubmed.ncbi.nlm.nih.gov/23720261/

Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL. Effects of fatigue on corticospinal excitability of the human knee extensors. Exp Physiol. 2016 Dec 1;101(12):1552-1564. DOI: 10.1113/EP085753.

View at:

Publisher site: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP085753

PubMed: https://pubmed.ncbi.nlm.nih.gov/27652591/

Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001 Oct;81(4):1725-89. DOI: 10.1152/physrev.2001.81.4.1725.

View at:

Publisher site: https://journals.physiology.org/doi/full/10.1152/physrev.2001.81.4.1725

PubMed: https://pubmed.ncbi.nlm.nih.gov/11581501/

Pollak KA, Swenson JD, Vanhaitsma TA, Hughen RW, Jo D, White AT, Light KC, Schweinhardt P, Amann M, Light AR. Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol. 2014 Feb;99(2):368-80. DOI: 10.1113/expphysiol.2013.075812.

View at:

Publisher site: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/expphysiol.2013.075812

PubMed: https://pubmed.ncbi.nlm.nih.gov/24142455/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946674/

Lal SK, Craig A. A critical review of the psychophysiology of driver fatigue. Biol Psychol. 2001 Feb;55(3):173-94. DOI: 10.1016/s0301-0511(00)00085-5.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0301051100000855?via%3Dihub

Publisher site: https://psycnet.apa.org/record/2001-17012-001

PubMed: https://pubmed.ncbi.nlm.nih.gov/11240213/

PubMed Central:

Gasser T, Bächer P, Möcks J. Transformations towards the normal distribution of broad band spectral parameters of the EEG. Clin Neurophysiol. 1982; 53 (1): 119-124. DOI: 10.1016 / 0013-4694 (82) 90112-2

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/0013469482901122?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/6173196/

Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage. 1997;5(1):49-62. DOI: 10.1006/nimg.1996.0247

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S1053811996902475

PubMed: https://pubmed.ncbi.nlm.nih.gov/9038284/

Danckert J, Maruff P, Ymer C, Kinsella G, Yucel M, de Graaff S, Currie J. Goal-directed selective attention and response competition monitoring: evidence from unilateral parietal and anterior cingulate lesions. Neuropsychology. 2000 Jan;14(1):16-28. DOI: 10.1037//0894-4105.14.1.16.

View at:

Publisher site: https://doi.apa.org/doiLanding?doi=10.1037%2F0894-4105.14.1.16

PubMed: https://pubmed.ncbi.nlm.nih.gov/10674795/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.