ETIOLOGY AND PATHOGENESIS OF HYPOPHARYNX CANCER: GENETIC AND IMMUNOLOGICAL FACTORS OF DEVELOPMENT. Review
Article PDF

Keywords

hypopharynx cancer, etiology and pathogenesis of hypopharynx cancer, genetic and immunological factors in the development of hypopharynx cancer

Abstract views: 58
PDF Downloads: 29

How to Cite

Grin , N., & Burlaka , Y. (2021). ETIOLOGY AND PATHOGENESIS OF HYPOPHARYNX CANCER: GENETIC AND IMMUNOLOGICAL FACTORS OF DEVELOPMENT. Review. Medical Science of Ukraine (MSU), 17(2), 102-113. https://doi.org/10.32345/2664-4738.2.2021.15

Abstract

Relevance. In the modern oncology hypopharynx malignant tumors are one of the urgent and significant problems. Hypopharynx is one of the most frequent localizations in the head and neck. An important factor causing the high occurrence in the population is the asymptomatic course of the disease, resulting in patients presenting for treatment with аn already widespread tumour process.

Objective: to summarize and systematize data on the etiology and pathogenesis of hypopharynx cancer.

Materials and methods. Analysis of scientific publications in the international electronic scientometric databases Scopus, PubMed by keywords. Search depth – 20 years (2001-2020).

Results. In recent years, the view on the mechanisms of the development of carcinogenesis has changed dramatically, the tumour is no longer considered as a mass of malignant cells, but rather as a self-sufficient biological structure with a complex microenvironment in which other subpopulations of cells damaged by cancer are involved. The stromal component of the tumour microenvironment consists of various types of cells such as cancer-associated fibroblasts, neutrophils, macrophages, regulatory T-cells, myeloid suppressor cells, NK-cells etc. These subpopulations of cells interact with each other as well as with cancer cells. In addition to amplification, deletion, loss of heterozygosity, as well as polymorphism of some genes that are directly involved in the cell cycle or act as regulators of posttranscriptional modifiers of their products at the early stages of carcinogenesis may be one of the promising directions in creating a panel of markers for the risk of developing hypopharynx cancer.

Conclusions. The microenvironment of the tumor consists of many different cell populations. These parts of the surrounding stroma can function as both positive and negative regulators of all signs of cancer, including evasion of apoptosis, induction of angiogenesis, deregulation of energy metabolism, resistance to detection and destruction by the immune system, and activation of invasion and metastasis. Exploring differences in the composition of the tumour microenvironment and their influence on the development and progression of hypopharynx cancer can help better understand mechanisms underlying different responses to therapy, and help to identify possible targets for clinical intervention.

https://doi.org/10.32345/2664-4738.2.2021.15
Article PDF

References

Shilova OYu, Urazova LN. [Molecular genetic methods for the prognosis and course of laryngeal cancer]. Siberian Journal of Oncology. 2010;5(41):64-70. [in Russian].

View at:

Cyberleninka: https://cyberleninka.ru/article/n/molekulyarno-geneticheskie-metody-prognoza-i-techeniya-raka-gortani

Paches A.I. [Tumors of the head and neck]. Moscow: Medicine, 2013. 478p. [in Russian].

View at:

Publisher site: https://www.mmbook.ru/catalog/onkologija/106421-detail

Hulst AM, Kroon W, Linden ES, Nagtzaam L, Ottenhof SR, Wegner I, Gunning AC, Grolman W, Braunius W. Grade of dysplasia and malignant transformation in adults with premalignant laryngeal lesions. Head Neck. 2016;38(1):2284-90. DOI: org/10.1002/hed.24185.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.24185

Ali SA, Smith JD, Hogikyan ND. The white lesion, hyperceratosis and displasia. Otolaryngol Clin North Am. 2019;52(4):703-12. DOI: 10.1016/j.otc.2019.03.014.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0030666519300556?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/31078307/

Wenig BM. Squamous cell carcinoma of the upper aerodigestive tract: dysplasia and select variants. Modern Pathology. 2017;30:112-8. DOI: 10.1038/modpathol.2016.207.

View at:

Publisher site: https://www.nature.com/articles/modpathol2016207

Europe PMC: https://europepmc.org/article/med/28060368

Brennan JA., Boyle JO, Koch WM, Goodman SN, Hruban RH, Eby YJ, Couch MJ, Forastiere AA, Sidransky D. Association between cigarette smoking and mutation of the p53 gene in squamous cell carcinoma of the head and neck. N. Engl. J. Med. 1995;332(11): 712-7. DOI: 10.1056 / NEJM199503163321104.

View at:

Publisher site: https://www.nejm.org/doi/full/10.1056/NEJM199503163321104

PubMed: https://pubmed.ncbi.nlm.nih.gov/7854378/

Gillison ML. Current topics in the epidemiology of oral cavity and oropharyngeal cancers. Head Neck. 2007;29(8):779-92. DOI: 10.1002/hed.20573.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.20573

Europe PMC: https://europepmc.org/article/med/17230556

Mastronikolis NS, Papadas TА, Goumas PD., Triantaphyllidou I-E, Theocharis A, Papageorgakopoulou N, Vynios DH. Head and neck: Laryngeal tumors: an overview. Atlas Genet Cytogenet Oncol Haematol. 2009;13(11): 888-93. DOI: 10.4267/2042/44625.

Shilova OYu. [Association of laryngeal cancer with human papillomaviruses and Epstein-Barr viruses]. Siberian Journal of Oncology. 2007;2;126-7. [in Russian].

View at:

Cyberleninka: https://cyberleninka.ru/article/n/assotsiatsiya-raka-gortani-s-virusami-papillomy-cheloveka-i-epshteyna-barr

Fakhry C, Gillison ML. Clinical Implications of Human Papillomavirus in Head and Neck Cancers. J. Clin. Oncol. 2006;24(17):2606-11. DOI: 10.1200/JCO.2006.06.1291.

View at:

Publisher site: https://ascopubs.org/doi/10.1200/JCO.2006.06.1291

PubMed: https://pubmed.ncbi.nlm.nih.gov/16763272/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696042/

Tran N, Rose BR, O’Brien CJ. Role of human papillomavirus in the etiology of head and neck cancer. Head Neck. 2007;29(1):64-70. DOI: 10.1002/hed.20460.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.20460

PubMed: https://pubmed.ncbi.nlm.nih.gov/16823878/

Abou-Elhamd KE, Habib TN. The role of chromosomal aberrations in premalignant and malignant lesions in head and neck squamous cell carcinoma. Eur. Arch. Otorhinolaryngol. 2008;265(2):203-7. DOI: 10.1007/s00405-007-0420-z.

View at:

Scopus: https://link.springer.com/article/10.1007/s00405-007-0420-z

PubMed: https://pubmed.ncbi.nlm.nih.gov/17701417/

El-Naggar AK, Steck K, Batsakis JG. Heterogeneity of the proliferative fraction and cyclin D1/CCND1 gene amplifcation in head and neck squamous cell carcinoma. Cytometry. 1995;21(1):47-51. DOI: 10.1002/cyto.990210110

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.990210110

PubMed: https://pubmed.ncbi.nlm.nih.gov/8529470/

Allen CT, Ricker JL, Chen Z, Van Waes C. Role of activated nuclear factor-kappa B in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck. 2007;29(10);959-71. DOI: 10.1002/hed.20615.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.20615

Europe PMC: https://europepmc.org/article/med/17405170

Lee TL, Yeh J, Friedman J, Yan B, Yang X, Yeh NT, Waes CV, Chen Z. A signal network involving coactivated NF-kappa B and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int. J. Cancer. 2008;122(9);1987-98. DOI: 10.1002/ijc.23324.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.23324

PubMed: https://pubmed.ncbi.nlm.nih.gov/18172861/

Lothaire P, de Azambuja E, Dequanter D, Lalami Y, Sotiriou C, Andry G, Castro G, Awada A. Molecular markers of head and neck squamous cell carcinoma: promising signs in need of prospective evaluation. Head Neck. 2006;28(3):256-69. DOI: 10.1002/hed.20326.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.20326

PubMed: https://pubmed.ncbi.nlm.nih.gov/16284973/

Van Waes C. Nuclear factor-kappa B in development, prevention, and therapy of cancer. Clin. Cancer Res. 2007;13(4):1076-82. DOI: 10.1158/1078-0432.CCR-06-2221

View at:

Publisher site: https://clincancerres.aacrjournals.org/content/13/4/1076

PubMed: https://pubmed.ncbi.nlm.nih.gov/17317814/

McKenzie HA, Fung C, Becker TM, Irvine M, Mann GJ, Kefford RF, Rizos H. Predicting functional significance of cancer-associated p16 (INK4a) mutations in CDKN2A. Hum. Mutat. 2010;31(6):692-701. DOI: 10.1002/humu.21245.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1002/humu.21245

PubMed: https://pubmed.ncbi.nlm.nih.gov/20340136/

Muşat M, Morris DG, Korbonits M., Grossman AB. Cyclins and their related proteins in pituitary tumourigenesis. Mol. Cell Endocrinol. 2010;27:123-34. DOI: 10.1016/j.mce.2010.03.017.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0303720710001644?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/20347931/

Child ES, Hendrychová T, McCague K, Futreal A, Otyepka M, Mann DJ. A cancer derived mutation in the PSTAIRE helix of cyclin-dependent kinase 2 alters the stability of cyclin binding. Biochеm. Biophys. Acta. 2010;1803(7):858-64. DOI: 10.1016/j.bbamcr.2010.04.004.

View at:

Scopus: https://www.sciencedirect.com/science/article/pii/S0167488910001102

PubMed: https://pubmed.ncbi.nlm.nih.gov/20399812/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111755/

Motamed M, Banerjee AR, Bradley PJ, Powe D. MIB-1 and p53 expression in radiotherapy-resistant T1aN0M0 glottic squamous cell carcinoma. Clin Otolaryngol Allied Sci. 2001;26(3):227-30. DOI: 10.1046/j.1365-2273.2001.00461.x.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2273.2001.00461.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/11437847/

Gorban NA, Popuchiev VV, Baryshev VV. [Predictive criteria for the course of squamous cell carcinoma of the larynx (literature review)]. Head and neck tumors. 2013; 1: 33-8. [in Russian]. DOI.org/10.17650/2222-1468-2013-0-1-33-38.

View at:

Publisher site: https://ogsh.abvpress.ru/jour/article/view/37?locale=ru_RU

Cyberleninka: https://cyberleninka.ru/article/n/prognosticheskie-kriterii-techeniya-ploskokletochnogo-raka-gortani-obzor-literatury

Ioachim E, Peschos D, Goussia A, Mittari E, Charalabopoulos K, Michael M, Salmas M, Vougiouklakis Th, Assimakopoulos D, Agnantis NJ. Expression patterns of cyclins D1, E in laryngeal epithelial lesions: correlation with other cell cycle regulators (p53, pRb, Ki-67 and PCNA) and clinicopathological features. Journal of Experimental & Clinical Cancer Research. 2004;23(2):277-83. URL.

View at:

PubMed: : https://pubmed.ncbi.nlm.nih.gov/15354413/

Mielcarek-Kuchta D, Olofsson J, Golusinski W. p53, Ki67 and cyclin D1 as prognosticators of lymph node metastases in laryngeal carcinoma. Eur Arch Otorhinolaryngol. 2003;260(10):549-54. DOI: 10.1007/s00405-003-0651-6.

View at:

Scopus: https://link.springer.com/article/10.1007%2Fs00405-003-0651-6

PubMed: https://pubmed.ncbi.nlm.nih.gov/14551784/

Kumar RV, Shenoy AM, Daniel R, Shah KV. Cyclin D1, p53, MIB1, intratumoral microvessel density, and human papillomavirus in advanced laryngeal carcinoma: association with nodal metastasis. Otolaryngol Head Neck Surg. 2004;131(4):509-13. DOI: 10.1016/j.otohns.2004.03.029.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0194599804003250

Publisher site: https://journals.sagepub.com/doi/10.1016/j.otohns.2004.03.029

PubMed: https://pubmed.ncbi.nlm.nih.gov/15467627/

Volavsek M, Bracko M, Gale N. Distribution and prognostic significance of cell cycle proteins in squamous carcinoma of the larynx, hypopharynx and adjacent epithelial hyperplastic lesions. J Laryngol Otol. 2003;117(4):286-93. DOI: 10.1258/00222150360600896.

View at:

Publisher site: https://www.cambridge.org/core/journals/journal-of-laryngology-and-otology/article/abs/distribution-and-prognostic-significance-of-cell-cycle-proteins-in-squamous-carcinoma-of-the-larynx-hypopharynx-and-adjacent-epithelial-hyperplastic-lesions/6BD92A7BF22A047D326D24B3DB5CEDDD

PubMed: https://pubmed.ncbi.nlm.nih.gov/12816218/

Ataman OU, Bentzen SM, Wilson GD, Daley FM, Richman PI, Saunders MI, Dische S. Molecular biomarkers and site of first recurrence after radiotherapy for head and neck cancer. Eur J Cancer. 2004;40(18):2734-41. DOI: 10.1016 / j.ejca.2004.08.019.

View at:

Publisher site: https://www.ejcancer.com/article/S0959-8049(04)00706-3/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/15571955/

Teppo H, Soini Y, Melkko J, Koivunen P, Alho O-P. Prognostic factors in laryngeal carcinoma: the role of apoptosis, p53, proliferation (Ki-67) and angiogenesis. APMIS. 2003;111(4):451-7. DOI: 10.1034/j.1600-0463.2003.1110401.x.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1600-0463.2003.1110401.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/12780518/

Vielba R, Bilbao J, Ispizua A, Zabalza I, Alfaro J, Rezola R, Moreno E, Elorriaga J, Alonso I, Baroja A, de la Hoz C. p53 and cyclin D1 as prognostic factors in squamous cell carcinoma of the larynx. Laryngoscope. 2003;113(1):167-72. DOI: 10.1097 / 00005537-200301000-00031.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1097/00005537-200301000-00031

PubMed: https://pubmed.ncbi.nlm.nih.gov/12514403/

Pastuszewski W, Dziegiel P, Krecicki T, Podhorska-Okolow M, Ciesielska U, Gorzynska E, Zabel M. Prognostic significance of metallothionein, p53 protein and Ki-67 antigen expression in laryngeal cancer. Anticancer Res. 2007;27(1A):335-42.

View at:

Publisher site: https://ar.iiarjournals.org/content/27/1A/335/tab-article-info

PubMed: https://pubmed.ncbi.nlm.nih.gov/17352251/

Bezshapochny SB, Gasyuk YuA, Loburets VV. [Molecular markers in squamous cell carcinomas of the larynx]. Journal of ear, nose and throat diseases. 2011;4:69-74. [in Ukrainian].

Nylander K, Dabelsteen E, Hall PA. The p53 molecule and its prognostic role in squamous cell carcinomas of the head and neck. J Oral Pathol Med. 2000;29(9):413-25. DOI: 10.1034 / j.1600-0714.2000.290901.x.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1600-0714.2000.290901.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/11016683/

Boran C, Yildiz L, Kandemir B, Karagoz F, Baris S, Aydin O. Correlation of proliferating cell nuclear antigen and bcl-2 expression with tumor front grading and metastasis in laryngeal squamous cell carcinoma. Neoplasma. 2003;50:139-43.

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/12740649

Hussein MR. Alterations of p53 and Bcl-2 protein expression in the laryngeal intraepithelial neoplasia. Cancer biology and therapy. 2005;4(2):213-7. DOI: 10.4161 / cbt.4.2.1443. DOI: 10.4161/cbt.4.2.1443

View at:

Publisher site: https://www.tandfonline.com/doi/abs/10.4161/cbt.4.2.1443

PubMed: https://pubmed.ncbi.nlm.nih.gov/15684608/

Urpegui G, Morandeira G, Soria N, Abenia I, Valencia J, Morales M, Vallés V. [Study of bcl-2 oncogene in squamouscell carcinoma of the larynx]. Acta Otorrinolaringol. Esp. 2000;51(3):228-34. [Article in Spanish]

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/10867397/

Michaud WA, Nichols AC, Mroz EA, Faquin WC, Clark JR, Begum S, Westra WH, Wada H, Busse PM, Ellisen LW, Rocco JW. Bcl-2 blocks cisplatin-inducad apoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma. Clin. Cancer Res. 2009;15(5):1645-54. DOI: 10.1158 / 1078-0432.CCR-08-2581.

View at:

Publisher site: https://clincancerres.aacrjournals.org/content/15/5/1645

PubMed: https://pubmed.ncbi.nlm.nih.gov/19240170/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745309/

Dvorak HF. Vascular permeability factor vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 2002;20:4368-80. DOI: 10.1200/JCO.2002.10.088.

View at:

Publisher site: https://ascopubs.org/doi/10.1200/JCO.2002.10.088

PubMed: https://pubmed.ncbi.nlm.nih.gov/12409337/

Ferrara N. VEGF and the quest for tumor angiogenesis factors. Nat. Rev. Cancer. 2002;2:795-803. DOI: 10.1038/nrc909.

View at:

Publisher site: https://www.nature.com/articles/nrc909

PubMed: https://pubmed.ncbi.nlm.nih.gov/12360282/

Boonkitticharoen V, Kulapaditharom B, Leopairut J, Kraiphibul P, Larbcharoensub N, Cheewaruangroj W, Chintrakarn C, Pochanukul L. Vascular endothelial growth factor and proliferation marker in prediction of lymph node metastasis in laryngeal squamous cell carcinoma. Archives of otolaryngology-head & neck surgery. 2008;134(12):1305-11. DOI: 10.1001/archotol.134.12.1305.

View at:

Publisher site: https://jamanetwork.com/journals/jamaotolaryngology/fullarticle/409594

PubMed: https://pubmed.ncbi.nlm.nih.gov/19075127/

Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer. 2019;18(1):2-24. DOI: 10.1186/s12943-019-0983-5.

View at:

Publisher site: https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-019-0983-5

PubMed: https://pubmed.ncbi.nlm.nih.gov/30927923/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441173/

Jia CC, Wang TT, Liu W, Fu B-S, Hua XF, Wang G-Y, Li T-J, Li X, Wu X-Y, Tai Y, Zhou J, Chen G-H, Zhang Q. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 2013;8(5):1-9. DOI: 10.1371/journal.pone.0063243.

View at:

Publisher site: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063243

PubMed: https://pubmed.ncbi.nlm.nih.gov/23667593/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647063/

Luker KE, Lewin SA, Mihalko LA, Schmidt BT, Winkler JS, Coggins NL, Thomas DG, Luker GD. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene. 2012;31(45):4750-8. DOI: 10.1038/onc.2011.633.

View at:

Publisher site: https://www.nature.com/articles/onc2011633

PubMed: https://pubmed.ncbi.nlm.nih.gov/22266857/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337948/

Augsten M, Sjöberg E, Frings O, Vorrink SU, Frijhoff J, Olsson E, Borg Å, Östman A. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signalling for their tumor-supporting properties. Cancer Res. 2014;74(11):2999-3010. DOI: 10.1158/0008-5472.CAN-13-2740.

View at:

Publisher site: https://cancerres.aacrjournals.org/content/74/11/2999

PubMed: https://pubmed.ncbi.nlm.nih.gov/24710408/

Bello IO, Vered M, Dayan D, Dobriyan A, Yahalom R, Alanen K, Nieminen P, Kantola S, Läärä E, Salo T. Cancer-associated fibroblasts, a parameter of the tumor microenvironment, overcomes carcinoma-associated parameters in the prognosis of patients with mobile tongue cancer. Oral Oncol. 2011;47(1):33-8. DOI: 10.1016/j.oraloncology.2010.10.013.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S1368837510003295?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/21112238/

Jung D-W, Che ZM, Kim J, Kim K, Kim K-Y, Williams D, Kim J. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer. 2010;127(2): 332-44. DOI: 10.1002/ijc.25060.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.25060

PubMed: https://pubmed.ncbi.nlm.nih.gov/19937793/

Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, Gantt Jr GA, Sukhdeo K, DeVecchio J, Vasanji A, Leahy P, Hjelmeland AB, Kalady MF, Rich JN. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210(13):2851-72. DOI: 10.1084/jem.20131195.

View at:

Publisher site: https://rupress.org/jem/article/210/13/2851/41506/Chemotherapy-activates-cancer-associated

PubMed: https://pubmed.ncbi.nlm.nih.gov/24323355/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865474/

Calon A, Tauriello DV, Batlle E. TGF-beta in CAF-mediated tumor growth and metastasis. Semin Cancer Biol. 2014;25:15-22. DOI: 10.1016/j.semcancer.2013.12.008.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S1044579X14000054?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/24412104/

Glentis A, Oertle P, Mariani P, Chikina A, Marjou FEl, Attieh Y, Zaccarini F, Lae M, Loew D, Dingli F, Sirven P, Schoumacher M, Gurchenkov BG, Plodinec M, Vignjevic DM. Cancer-associated fibroblasts induce metalloprotease independent cancer cell invasion of the basement membrane. Nature Communications. 2017;8(1):1-13. DOI: 10.1038/s41467-017-00985-8.

View at:

Publisher site: https://www.nature.com/articles/s41467-017-00985-8

PubMed: https://pubmed.ncbi.nlm.nih.gov/29030636/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640679/

Hawinkels LJ, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman JHN, W Mesker, Dijke P, Sier CFM. Interaction with colon cancer cells hyperactivates TGF-beta signaling in cancer-associated fibroblasts. Oncogene. 2014;33(1):97-107. DOI: 10.1038/onc.2012.536.

View at:

Publisher site: https://www.nature.com/articles/onc2012536

PubMed: https://pubmed.ncbi.nlm.nih.gov/23208491/

Netea MG, Mantovani A. Adaptive Characteristics of Innate Immune Responses in Macrophages. Macrophages: Biology and Role in the Pathology of Diseases. 2014;339-48.

View at:

Scopus: https://link.springer.com/chapter/10.1007/978-1-4939-1311-4_15

Murray PJ, Allenet JE, Biswaset SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14-20. DOI: 10.1016/j.immuni.2014.06.008.

View at:

Scopus: https://www.sciencedirect.com/science/article/pii/S1074761314002283

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123412/

Melton DW, McManus LM, Gelfond JA, Shireman PK. Temporal Phenotypic features distinguish polarized macrophages in vitro. Autoimmunity. 2015;48(3):161-76. DOI: 10.3109/08916934.2015.1027816.

View at:

Publisher site: https://www.tandfonline.com/doi/full/10.3109/08916934.2015.1027816

PubMed: https://pubmed.ncbi.nlm.nih.gov/25826285/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681525/

Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, Ponsoda S, Delneste Y, Hebbar M, Jeannin P. Interferon-γ reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. International Journal of Cancer. 2009;125(2):367-73. DOI: 10.1002/ijc.24401.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.24401

PubMed: https://pubmed.ncbi.nlm.nih.gov/19378341/

Zhang S, Kim C, Batra S, McKerrow JH, Loke P. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines. PLOS Neglected Tropical Diseases. 2010;4(3):648. DOI: 10.1371/journal.pntd.0000648.

View at:

Publisher site: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0000648

PubMed: https://pubmed.ncbi.nlm.nih.gov/20361029/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846935/

Weber M, Butter-Herold M, Hyckel P, Moebius P, Distel L, Ries J, Amann K, Neukam FW, Wehrhan F. Small oral squamous cell carcinomas with nodal lymphogenic metastasis show increased infiltration of M2 polarized macrophages – An immunohistochemical analysis. Journal of Cranio-Maxillofacial Surgery. 2014;42(7):1087-94. DOI: 10.1016/j.jcms.2014.01.035.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S1010518214000377?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/24556525/

PubMed Central:

Mantovani A, Biswas SK, Galdiero RM, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology. 2013;229(2):176-85. DOI: 10.1002/path.4133.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/full/10.1002/path.4133

PubMed: https://pubmed.ncbi.nlm.nih.gov/23096265/

Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T, Lu J, Liu J. Expression of M2-Polarized Macrophages is Associated with Poor Prognosis for Advanced Epithelial Ovarian Cancer. Technology in Cancer Research & Treatment. 2013;12(3):259-67. DOI: 10.7785/tcrt.2012.500312.

View at:

Publisher site: https://journals.sagepub.com/doi/10.7785/tcrt.2012.500312

PubMed: https://pubmed.ncbi.nlm.nih.gov/23289476/

Hu Y, He MY, Zhu LF et al. Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2016; 35(12):1-19. DOI: 10.1186/s13046-015-0281-z.

View at:

Publisher site: https://jeccr.biomedcentral.com/articles/10.1186/s13046-015-0281-z

PubMed: https://pubmed.ncbi.nlm.nih.gov/26769084/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714460/

Li W, Zhang X, Wang J, Li M, Cao C, Tan J, Ma D, Gao Q. TGFβ1 in fibroblasts-derived exosomes promotes epithelial mesenchymal transition of ovarian cancer cells. Oncotarget. 2017;8(56):96035-47. DOI: 10.18632/oncotarget.21635.

View at:

Publisher site: https://www.oncotarget.com/article/21635/text/

PubMed: https://pubmed.ncbi.nlm.nih.gov/29221185/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707079/

Seminerio I, Kindt N, Descamps G, Bellier J, Lechien JR, Mat Q, Pottier C, Journé F, Saussez S. High infiltration of CD68+ macrophages is associated with poor prognoses of head and neck squamous cell carcinoma patients and is influenced by human papillomavirus. Oncotarget. 2018;9(13):11046-59. DOI: 10.18632/oncotarget.24306.

View at:

Publisher site: https://www.oncotarget.com/article/24306/text/

PubMed: https://pubmed.ncbi.nlm.nih.gov/29541395/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834277/

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004; 303(5663):1532-5. DOI: 10.1126/science.1092385

View at:

Publisher site: https://science.sciencemag.org/content/303/5663/1532

PubMed: https://pubmed.ncbi.nlm.nih.gov/15001782/

Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology. 2007;176(2):231-41. DOI: 10.1083/jcb.200606027.

View at:

Publisher site: https://rupress.org/jcb/article/176/2/231/44718/Novel-cell-death-program-leads-to-neutrophil

PubMed: https://pubmed.ncbi.nlm.nih.gov/17210947/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063942/

Yipp BG,Petri B, Salina D. et al. Dynamic NETosis is Carried Out by Live Neutrophils in Human and Mouse Bacterial Abscesses and During Severe Gram-Positive Infection. Nature medicine. 2012;18(9):1386-93. DOI: 10.1038/nm.2847.

View at:

Publisher site: https://www.nature.com/articles/nm.2847

PubMed: https://pubmed.ncbi.nlm.nih.gov/22922410/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529131/

Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers Jr DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences. 2010;107(36):15880-5. DOI: 10.1073/pnas.1005743107.

View at:

Publisher site: https://www.pnas.org/content/107/36/15880

PubMed: https://pubmed.ncbi.nlm.nih.gov/20798043/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936604/

Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT, Wagner DD. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proceedings of the National Academy of Sciences. 2012;109(32):13076-81. DOI: 10.1073/pnas.1200419109.

View at:

Publisher site: https://www.pnas.org/content/109/32/13076

PubMed: https://pubmed.ncbi.nlm.nih.gov/22826226/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420209/

Paneesha S, McManus A, Arya R, Scriven N, Farren T, Nokes T, Bacon S, Nieland A, Cooper D, Smith H, O'Shaughnessy D, Rose P. Frequency, demographics and risk (according to tumour type or site) of cancer-associated thrombosis among patients seen at outpatient DVT clinics. Thrombosis and Haemostasis. 2010;103(2):338-43. DOI: 10.1160/TH09-06-0397.

View at:

Publisher site: https://www.thieme-connect.de/products/ejournals/abstract/10.1160/TH09-06-0397

PubMed: https://pubmed.ncbi.nlm.nih.gov/20024496/#:~:text=In%20the%20current%20study%2C%20the,13.6%25%20in%20this%20outpatient%20population.

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183-94. DOI: 10.1016/j.ccr.2009.06.017.

View at:

Publisher site: https://www.cell.com/cancer-cell/fulltext/S1535-6108(09)00215-3

PubMed: https://pubmed.ncbi.nlm.nih.gov/19732719/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754404/

Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. The Journal of Clinical Investigation. 2010;120(4):1151-64. DOI: 10.1172/JCI37223.

View at:

Publisher site: https://www.jci.org/articles/view/37223

PubMed: https://pubmed.ncbi.nlm.nih.gov/20237412/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846036/

Andzinski L, Kasnitz N, Stahnke S, Wu C-F, Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S, Jablonska J. Type IIFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. International Journal of Cancer. 2016;138(8):1982-93. DOI: 10.1002/ijc.29945.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.29945

PubMed: https://pubmed.ncbi.nlm.nih.gov/26619320/

Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokineinduced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. Journal of immunology. 2010; 185(4):2273-84. DOI: 10.4049/jimmunol.1000901.

View at:

Publisher site: https://www.jimmunol.org/content/185/4/2273

PubMed: https://pubmed.ncbi.nlm.nih.gov/20644162/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923483/

Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, Ochoa AC, Fletcher M, Velasco C, Wilk A, Reiss K, Rodriguez PC. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer. 2014:1097-2015. DOI: 10.1002/ijc.28622.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.28622

PubMed: https://pubmed.ncbi.nlm.nih.gov/24259296/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980009/

Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI. Mechanism regulating reactive oxygen species in tumor induced myeloid-derived suppressor cells: MDSC and ROS in cancer. Journal of immunology. 2009;182(9):5693-701. DOI: 10.4049/jimmunol.0900092.

View at:

Publisher site: https://www.jimmunol.org/content/182/9/5693

PubMed: https://pubmed.ncbi.nlm.nih.gov/19380816/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833019/

Zhang H, Li ZL, Ye ShB et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunology, Immunotherapy. 2015;64(12):1587-99. DOI: 10.1007/s00262-015-1765-6.

View at:

Scopus: https://link.springer.com/article/10.1007%2Fs00262-015-1765-6

PubMed: https://pubmed.ncbi.nlm.nih.gov/26497849/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643115/

Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. The Journal of Experimental Medicine. 2014;211(5):781-90. DOI: 10.1084/jem.20131916.

View at:

Publisher site: https://rupress.org/jem/article/211/5/781/41703/PD-L1-is-a-novel-direct-target-of-HIF-1-and-its

PubMed: https://pubmed.ncbi.nlm.nih.gov/24778419/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010891/

Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen S-H. Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host. Cancer Research. 2006;66(2):1123-31. DOI: 10.1158/0008-5472.CAN-05-1299.

View at:

Publisher site: https://cancerres.aacrjournals.org/content/66/2/1123

PubMed: https://pubmed.ncbi.nlm.nih.gov/16424049/

Hoechst B, Voiglaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009:1527-50. DOI: 10.1002/hep.23054.

View at:

Publisher site: https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.23054

PubMed: https://pubmed.ncbi.nlm.nih.gov/19551844/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357774/

Du R, Lu KL, Petritsch C, Liu P, Ganss R, Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G. HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion. Cancer cell. 2008;13(3):206-20. DOI: 10.1016/j.ccr.2008.01.034.

View at:

Publisher site: https://www.cell.com/cancer-cell/fulltext/S1535-6108(08)00041-X

PubMed: https://pubmed.ncbi.nlm.nih.gov/18328425/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643426/

Hugle T. Beyond allergy: the role of mast cells in fibrosis. Swiss Med Wkly. 2014:1424-97. DOI: 10.4414 / smw.2014.13999.

View at:

Publisher site: https://smw.ch/article/doi/smw.2014.13999

PubMed: https://pubmed.ncbi.nlm.nih.gov/25184789/

Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA. Human Mast Cells Release Metalloproteinase-9 on Contact with Activated T Cells: Juxtacrine Regulation by TNF-α. The Journal of Immunology. 2001;167(7):4008-16. DOI: 10.4049/jimmunol.167.7.4008.

View at:

Publisher site: https://www.jimmunol.org/content/167/7/4008

PubMed: https://pubmed.ncbi.nlm.nih.gov/11564820/

Stoyanov E, Uddin M, Mankuta D, Dubinett SM, Levi-Schaffer F. Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer. 2012;75(1):38-44. DOI: 10.1016/j.lungcan.2011.05.029

View at:

Publisher site: https://www.lungcancerjournal.info/article/S0169-5002(11)00329-1/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/21733595/

Saleem SJ, Martin RK, Morales JM, Sturgill JL, Gibb DR, Graham L, Bear HD, Manjili MH, Ryan JJ, Conrad DH. Cutting edge: mast cells critically augment myeloid-derived suppressor cell activity. J Immunol. 2012:1550-606. DOI: 10.4049/jimmunol.1200647.

View at:

Publisher site: https://www.jimmunol.org/content/189/2/511

PubMed: https://pubmed.ncbi.nlm.nih.gov/22706087/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392490/

Yang Z, Zhang B, Li D, Lv M, Huang C, Shen G-X, Huang B. Mast Cells Mobilize Myeloid-Derived Suppressor Cells and Treg Cells in Tumor Microenvironment via IL-17 Pathway in Murine Hepatocarcinoma Model. PLOS ONE. 2010;5(1):e8922. DOI: 10.1371/journal.pone.0008922.

View at:

Publisher site: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008922

PubMed: https://pubmed.ncbi.nlm.nih.gov/20111717/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811741/

Lätti S, Leskinen M, Shiota N, Wang Y, Kovanen PT, Lindstedt KA. Mast cell-mediated apoptosis of endothelial cells in vitro: A paracrine mechanism involving TNF-α-mediated down-regulation of bcl-2 expression. Journal of Cellular Physiology. 2003;195(1): 130-8. DOI: 10.1002/jcp.10235.

View at:

Publisher site: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.10235

PubMed: https://pubmed.ncbi.nlm.nih.gov/12599216/

Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11): 2167-76. DOI: 10.1182/blood-2009-08-238469.

View at:

Publisher site: https://ashpublications.org/blood/article/115/11/2167/27060/Regulation-of-human-NK-cell-cytokine-and-chemokine

PubMed: https://pubmed.ncbi.nlm.nih.gov/19965656/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844017/

Orr MT, Lanier LL. Natural Killer Cell Education and Tolerance. Cell. 2010; 142(6):847-56. DOI: 10.1016 / j.cell.2010.08.031.

View at:

Publisher site: https://www.cell.com/cell/fulltext/S0092-8674(10)01000-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867410010007%3Fshowall%3Dtrue

PubMed: https://pubmed.ncbi.nlm.nih.gov/20850008/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945212/

Chan CJ, Smyth MJ, Martinet L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death and Differentiation. 2014;21:5-14. DOI: 10.1038/cdd.2013.26.

View at:

Publisher site: https://www.nature.com/articles/cdd201326

PubMed: https://pubmed.ncbi.nlm.nih.gov/23579243/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857624/

Wang W, Erbe АК, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Frontiers in Immunology. 2015;6:368. DOI: 10.3389/fimmu.2015.00368.

View at:

Publisher site: https://www.frontiersin.org/articles/10.3389/fimmu.2015.00368/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/26284063/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515552/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.