THE OROPHARYNX MICROBIOME PROFILE OF CHILDREN WITH INFECTIOUS MONONUCLEOSIS EPSTEIN-BARR VIRAL ETIOLOGY
Article PDF (Українська)

Keywords

children, microbiome, infectious mononucleosis, Epstein-Barr virus, antibiotic resistance

Abstract views: 48
PDF Downloads: 14

How to Cite

Nadraga , A., Korniychuk , O., & Klymenko , K. (2021). THE OROPHARYNX MICROBIOME PROFILE OF CHILDREN WITH INFECTIOUS MONONUCLEOSIS EPSTEIN-BARR VIRAL ETIOLOGY. Medical Science of Ukraine (MSU), 17(2), 82-89. https://doi.org/10.32345/2664-4738.2.2021.12

Abstract

Relevance. The microbiota of the oral cavity is individual and the consistency of its composition provides a protective function that is regulated by the immune system. Dysbiotic changes in the oral microbiota composition lead to a devastation of local immunity and provide to the disease's development. Herpes virus infection аctivation suppresses the immune response which increases the level of oral mucosa bacteria colonization in particular during the acute course of infectious mononucleosis (IM).

Objective: to study the features of the oral microbiome composition and its sensitivity to antibacterial drugs in patients with infectious mononucleosis and acute tonsillitis.

Materials and methods. We examined 306 children aged 7 to 236 months. The main group (n = 280) – children with IM. Comparison group (n = 26) – children diagnosed with acute tonsillitis. The main group was divided into two subgroups: subgroup I – 234 children with MI caused by the Epstein-Barr virus (EBV), and subgroup II – 46 children with co-infection with the EBV virus and cytomegalovirus (CMV). The examination was performed according to the treatment protocol: general and biochemical analysis of blood, determination of IgM antibodies to Epstein-Barr virus and cytomegalovirus, bacteriological examination of oropharyngeal mucus, followed by determination of the sensitivity of the identified pathogens to antibacterial drugs.

The results. In oral microbiome of children with IM caused by EBV and CMV co-infection pneumococcus dominant. In children with acute tonsillitis, Staphylococcus aureus, S. pyogenes infection, and yeast-like fungi were predominant. S. pyogenes, in children with co-infection, has a high level of resistance to β-lactam antibiotics. Higher levels of antibiotic-resistant strains were found among Enterococcus spp. Isolates, especially in children with EBV-induced MI and co-infection of EBV and CMV.

Conclusions. The development of MI is accompanied by microecological dysbiosis of the mucous membranes of the oropharynx and tonsils, which do not provide enough level of colonization resistance, contributing to the spread of antibiotic resistance among resident and transient microbiota.

https://doi.org/10.32345/2664-4738.2.2021.12
Article PDF (Українська)

References

Gevkaliuk N., Sydliaruk N., Pynda M., Pudiak V., Krupey V. Condition of non-specific resistance of oral mucous membrane in children with viral influenza stomatitis in the concept of malt-system. Georgian medical news. 2018; (280-281): 34-40.

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/30204091/

Zaytsev A.V., Boychenko O.N., Sidash Y.V., Kotelevska N.V., Nikolyshyn A.K. Qualitative analysis of oral lactobacilli parameters at different stages of human life cycle and different caries indices. Wiadomosci lekarskie (Warsaw, Poland). 2020; 73(6), 1207-10.

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/32723954/

Europe PMC: https://europepmc.org/article/med/32723954

URL: https://wiadlek.pl/wp-content/uploads/archive/2020/WLek202006124.pdf

Nadraga A., Lutsyk A., Klymenko K., Khomyn O. The investigation of bacterial adhesion of palatine tonsils epithelial cells in patient with infectious mononucleosis. EUREKA: Health Sciences. 2021; (3), 45-52. DOI: 10.21303/2504-5679.2021.001835

View at:

Publisher site: http://journal.eu-jr.eu/health/article/view/1835

Sudhakara P., Gupta A., Bhardwaj A., Wilson A. Oral Dysbiotic Communities and Their Implications in Systemic Diseases. Dentistry journal. 2018; 6(2): 10. DOI: 10.3390/dj6020010

View at:

Publisher site: https://www.mdpi.com/2304-6767/6/2/10

PubMed: https://pubmed.ncbi.nlm.nih.gov/29659479/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023521/

Naughton P., Healy M., Enright F., Lucey B. Infectious Mononucleosis: diagnosis and clinical interpretation. British journal of biomedical science. 2021 Apr 14; 1-10. DOI: 10.1080/09674845.2021.1903683

View at:

Publisher site: https://www.tandfonline.com/doi/abs/10.1080/09674845.2021.1903683?journalCode=tbbs20

PubMed: https://pubmed.ncbi.nlm.nih.gov/33721513/

Kharchenko Y, Zaretska A, Broshkov M. [The features of the course of infectious mononukleosis of different etiology in children]. Georgian Medical News. 2019 Feb; (287):51-6. [in Russian]

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/30958288/

Turk M., Mejanelle L., Šentjurc M., Grimalt J.O., Gunde-Cimerman N., Plemenitaš A. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles. 2004; 8(1), 53-6. DOI: 10.1007/s00792-003-0360-5.

View at:

Scopus: https://link.springer.com/article/10.1007/s00792-003-0360-5

PubMed: https://pubmed.ncbi.nlm.nih.gov/15064990/

Europe PMC: http://europepmc.org/article/MED/15064990

European Committee on Antimicrobial Susceptibility Testing, EUCAST. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. CLSI document M100-S23.

View at:

Publisher site: https://eucast.org/

url: https://clsi.org/media/3481/m100ed30_sample.pdf

Tompkins K., Juliano J.J., van Duin D. Antimicrobial Resistance in Enterobacterales and Its Contribution to Sepsis in Sub-saharan Africa. Frontiers in medicine. 2021; 8: 615649. DOI: 10.3389/FMED.2021.615649

View at:

Publisher site: https://www.frontiersin.org/articles/10.3389/fmed.2021.615649/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/33575265/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870712/

Sebastian S., Tom A.A., Babu J.A., Joshy M. Antibiotic resistance in Escherichia coli isolates from poultry environment and UTI patients in Kerala, India: A comparison study. Comparative immunology, microbiology and infectious diseases. 2021; 75: 101614. DOI: 10.1016/j.cimid.2021.101614.

View at:

Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0147957121000060?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/33517101/

Giacomini E., Perrone V., Alessandrini D., Paoli D., Nappi C., Esposti L.D. Evidence of Antibiotic Resistance from Population-Based Studies: A Narrative Review. Infection and drug resistance. 2021; 14: 849-58. DOI: 10.2147/IDR.S289741

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/33688220/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937387/

Hasibi M., Zargaran M., Asadollahi-Amin A. Infectious Mononucleosis Complicated with Bilateral Peritonsillar Abscess and Splenic Infarction. Case reports in infectious diseases. 2021; 6623834. DOI: 10.1155/2021/6623834

View at:

Publisher site: https://www.hindawi.com/journals/criid/2021/6623834/

Lu B., Yan Y., Dong L., Han L., Liu Y., Yu J., Chen J., Yi D., Zhang M., Deng X., Wang C., Wang R., Wang D., Wei H., Liu D., Yi C. Integrated characterization of SARS-CoV-2 genome, microbiome, antibiotic resistance and host response from single throat swabs. Cell discovery. 2021; 7(1): 19. DOI: 10.1038/s41421-021-00248-3

View at:

Publisher site: https://www.nature.com/articles/s41421-021-00248-3

PubMed: https://pubmed.ncbi.nlm.nih.gov/33785729/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008776/

Konechnyi Yu., Skurativskyi Yu., Tymchuk I., Pidhirnyi Ya., Kornіychuk O. [Microbiological profi le of nosocomial infections]. Proceeding of the Shevchenko Scientific Society. Medical Science. 2019; 55(1): 56-64. [In Ukrainian].

View at:

Publisher site: www. mspsss. org. ua

NBUV: http://nbuv.gov.ua/UJRN/pntsh_lik_2019_55_1_6

Fota-Markowska H., Rolla-Szczepańska R., Chudnicka A.M., Modrzewska R. [Profile of microorganisms isolated in nasopharyngeal swabs from the patients with acute infectious mononucleosis]. Wiadomosci Lekarskie. 2002; 55(3-4): 150-7. [in Polish]

View at:

PubMed: https://pubmed.ncbi.nlm.nih.gov/12181999/

Europe PMC: https://europepmc.org/article/med/12181999

Bobruk S.V. [Lactoferrin, as an indicator of the inflammatory process in infectious mononucleosis in children]. Visnyk of Vinnytsia National Medical University. 2018; 22(1): 83-6. [in Ukrainian]

View at:

Publisher site: http://nbuv.gov.ua/UJRN/vvnmu_2018_22_1_18

chaired by Jim O’Neill. Review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations. 2019.

View at:

Publisher site: https://amr-review.org/Publications.html

Nevejan L., Goegebuer T., Mast P., Lemmens A. Pyelonephritis and bacteremia caused by Haemophilus parainfluenzae: case-report of an unusual pathogen. Acta Clinica Belgica. 2021; 76:152-4. DOI:10.1080/17843286.2019.1671059.

View at:

Publisher site: https://www.tandfonline.com/doi/abs/10.1080/17843286.2019.1671059?journalCode=yacb20

PubMed: https://pubmed.ncbi.nlm.nih.gov/31545159/

Nadraga O.B., Klimenko K.P. Epstein-Barr and cytomegalovirus infection in children. Modern pediatrics. 2017; 7(87), 7-11. DOI: 10.15574/SP.2017.87.7 [in Russian]

View at:

Publisher site: http://sp.med-expert.com.ua/article/view/SP.2017.87.7

URL: https://med-expert.com.ua/journals/jepshtejn-barr-citomegalovirusnaja-infekcija-u-detej/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.