BIOFILM AND TUMOR: INTERPRETATION OF INTERACTION AND TREATMENT STRATEGIES. Review
Article PDF

Keywords

biofilm, tumor, heterogeneity, biomarker, repositioning, bacteriotherapy

Abstract views: 35
PDF Downloads: 24

How to Cite

Ivanenko, N. (2021). BIOFILM AND TUMOR: INTERPRETATION OF INTERACTION AND TREATMENT STRATEGIES. Review. Medical Science of Ukraine (MSU), 17(1), 104-120. https://doi.org/10.32345/2664-4738.1.2021.13

Abstract

Relevance. Treatment of solid tumors and biofilm-derived infections face a common problem: drugs often fail to reach and kill cancer cells and microbial pathogens because of local microenvironment heterogeneities. There are remarkable challenges for current and prospective anticancer and antibiofilm agents to target and maintain activity in the microenvironments where cancer cells and microbial pathogens survive and cause the onset of disease. Bacterial infections in cancer formation will increase in the coming years. Collection of approaches such as ROS modulation in cells, the tumor is promoted by microbe’s inflammation can be a strategy to target cancer and bacteria. Besides that, bacteria may take the advantage of oxygen tension and permissive carbon sources, therefore the tumor microenvironment (TM) becomes a potential refuge for bacteria. It is noteworthy that the relationship between cancer and bacteria is intertwined.

Objective: To analyze similarities between biofilm and tumor milieu that is produced against stress conditions and heterogeneous microenvironment for a combination of approaches the bacteriotherapy with chemotherapy which can help in defeating the tumor heterogeneity accompanied with malignancy, drug-resistance, and metastasis.

Method: An analytical review of the literature on keywords from the scientometric databases PubMed, Wiley.

Results: Bacteria evade antimicrobial treatment is mainly due to persistence that has become dormant during the stationary phase and tolerance. Drug-tolerant persisters and cellular dormancy are crucial in the development of cancer, especially in understanding the development of metastases as a late relapse. Biofilms are formed by groups of cells in different states, growing or non-growing and metabolically active or inactive in variable fractions, depending on maturity and on chemical gradients (O2 and nutrients) of the biofilms producing physiological heterogeneity. Heterogeneity in the microenvironment of cancer can be described as a non-cell autonomous driver of cancer cell diversity; in a highly diverse microenvironment, different cellular phenotypes may be selected for or against in different regions of the tumor. Hypoxia, oxidative stress, and inflammation have been identified as positive regulators of metastatic potential, drug resistance, and tumorigenic properties in cancer. It is proven that, Escherichia coli (E. coli) and life-threatening infectious pathogens such as Staphylococcus aureus (SA) and Mycobacterium tuberculosis (Mtb) are noticeably sensitive to alterations in the intracellular oxidative environment.  An alternative emerging paradigm is that many cancers may be promoted by commensal microbiota, either by translocation and adherence of microbes to cancer cells or by the distant release of inflammation-activating microbial metabolites. Microbial factors such as F. nucleatum, B. fragilis, and Enterobacteriaceae members may contribute to disease onset in patients with a hereditary form of colorectal cancer (CRC); familial adenomatous polyposis (FAP). These findings are linked with the creation of new biomarkers and therapy for identifying and treating biofilm-associated cancers.  Currently,  about 20% of neoplasms globally can be caused by infections, with  approximately 1.2 million cases annually. Several antineoplastic drugs that exhibited activity against S. mutans, including tamoxifen, doxorubicin, and ponatinib, also possessed activity against other Gram-positive bacteria. Drug repurposing, also known as repositioning, has gained momentum, mostly due to its advantages over de novo drug discovery, including reduced risk to patients due to previously documented clinical trials, lower drug development costs, and faster benchtop-to-clinic transition. Although many bacteria are carcinogens and tumor promoters, some have shown great potential towards cancer therapy. Several species of bacteria have shown an impressive power to penetrate and colonize solid tumors, which has mainly led to neoplasm slower growth and   tumor clearance.  Different strains of Clostridia, Lactococcus, Bifidobacteria, Shigella, Vibrio, Listeria, Escherichia, and Salmonella have been evaluated against cancer in animal models. 

Conclusion. Cancer is a multifactorial disease and the use of bacteria for cancer therapy as an immunostimulatory agent or as a vector for carrying the therapeutic cargo is a promising treatment method. Therefore, the world has turned to an alternative solution, which is the use of genetically engineered microorganisms; thus, the use of living bacteria targeting cancerous cells is the unique option to overcome these challenges. Bacterial therapies, whether used alone or combination with chemotherapy, give a positive effect to treat multiple conditions of cancer.

https://doi.org/10.32345/2664-4738.1.2021.13
Article PDF

References

Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel). 2020; 9(2):59. doi: 10.3390/antibiotics9020059.

View at: Publisher Site: https://www.mdpi.com/2079-6382/9/2/59

PubMed: https://pubmed.ncbi.nlm.nih.gov/32028684/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167820/

Bjarnsholt T., Buhlin K., Dufrêne Y. F., Gomelsky M., Moroni A., Ramstedt M. [et al.] Biofilm formation – what we can learn from recent developments. J Intern Med. 2018; 284(4): 332-45. doi:10.1111/joim.12782.

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/full/10.1111/joim.12782

PubMed: https://pubmed.ncbi.nlm.nih.gov/29856510/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927207/

Maali Y, Journo C, Mahieux R, Dutartre H. Microbial Biofilms: Human T-cell Leukemia Virus Type 1 First in Line for Viral Biofilm but Far Behind Bacterial Biofilms. Front Microbiol. 2020; 11:2041. doi: 10.3389/fmicb.2020.02041.

View at: Publisher Site: https://www.frontiersin.org/articles/10.3389/fmicb.2020.02041/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/33042035/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523422/

Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact. 2016; 15(1):165. doi: 10.1186/s12934-016-0569-5.

View at: Publisher Site: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0569-5

PubMed: https://pubmed.ncbi.nlm.nih.gov/27716327/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045575/

Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018; 73(8):2003-2020. doi: 10.1093/jac/dky042.

View at: Publisher Site: https://academic.oup.com/jac/article/73/8/2003/4913710

PubMed: https://pubmed.ncbi.nlm.nih.gov/29506149/

Benoit DS, Koo H. Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine (Lond). 2016; 11(8):873-9. doi: 10.2217/nnm-2016-0014.

View at: Publisher Site: https://www.futuremedicine.com/doi/full/10.2217/nnm-2016-0014

PubMed: https://pubmed.ncbi.nlm.nih.gov/26987892/

Europe PMC: https://europepmc.org/article/med/26987892

Domingue JC, Drewes JL, Merlo CA, Housseau F, Sears CL. Host responses to mucosal biofilms in the lung and gut. Mucosal Immunol. 2020; 13(3):413-22. doi: 10.1038/s41385-020-0270-1.

View at: Publisher Site: https://www.nature.com/articles/s41385-020-0270-1

PubMed: https://pubmed.ncbi.nlm.nih.gov/32112046/

Scopus: https://jhu.pure.elsevier.com/en/publications/host-responses-to-mucosal-biofilms-in-the-lung-and-gut

Sadiq FA, Flint S, Li Y, Ou K, Yuan L, He GQ. Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance. Future Microbiol. 2017; 12:1087-107. doi: 10.2217/fmb-2017-0042.

View at: Publisher Site: https://www.futuremedicine.com/doi/10.2217/fmb-2017-0042

PubMed: https://pubmed.ncbi.nlm.nih.gov/28783379/

Europe PMC: https://europepmc.org/article/med/28783379

Yan J, Bassler BL. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe. 2019; 26(1):15-21. doi: 10.1016/j.chom.2019.06.002.

View at: Publisher Site: https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(19)30291-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312819302914%3Fshowall%3Dtrue

PubMed: https://pubmed.ncbi.nlm.nih.gov/31295420/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629468/

Scopus: https://www.sciencedirect.com/science/article/pii/S1931312819302914

Windels EM, Michiels JE, Van den Bergh B, Fauvart M, Michiels J. Antibiotics: Combatting Tolerance To Stop Resistance. mBio. 2019; 10(5):e02095-19. doi: 10.1128/mBio.02095-19.

View at: Publisher Site: https://mbio.asm.org/content/10/5/e02095-19

PubMed: https://pubmed.ncbi.nlm.nih.gov/31506315/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737247/

Endo H, Inoue M. Dormancy in cancer. Cancer Sci. 2019; 110(2):474-80. doi: 10.1111/cas.13917.

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/full/10.1111/cas.13917

PubMed: https://pubmed.ncbi.nlm.nih.gov/30575231/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361606/

Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev. 2018; 31(3):e00084-16. doi: 10.1128/CMR.00084-16.

View at: Publisher Site: https://cmr.asm.org/content/31/3/e00084-16

PubMed: https://pubmed.ncbi.nlm.nih.gov/29618576/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056845/

Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol. 2019; 10:846. doi: 10.3389/fmicb.2019.00846.

View at: Publisher Site: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00846/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/31110496/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501431/

Bisht K, Wakeman CA. Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Front Microbiol. 2019; 10:1908. doi: 10.3389/fmicb.2019.01908.

View at: Publisher Site: https://www.frontiersin.org/articles/10.3389/fmicb.2019.01908/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/31507548/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718512/

Kayser J, Schreck CF, Gralka M, Fusco D, Hallatschek O. Collective motion conceals fitness differences in crowded cellular populations. Nat Ecol Evol. 2018; 3(1):125-34. doi: 10.1038/s41559-018-0734-9.

View at: Publisher Site: https://www.nature.com/articles/s41559-018-0734-9

PubMed: https://pubmed.ncbi.nlm.nih.gov/30510177/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309230/

Gough A, Stern AM, Maier J, Lezon T, Shun TY, Chennubhotla C, Schurdak ME, Haney SA, Taylor DL. Biologically Relevant Heterogeneity: Metrics and Practical Insights. SLAS Discov. 2017; 22(3):213-37. doi: 10.1177/2472555216682725.

View at: Publisher Site: https://journals.sagepub.com/doi/10.1177/2472555216682725

PubMed: https://pubmed.ncbi.nlm.nih.gov/28231035/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464733/

Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017; 41(3):276-301. doi: 10.1093/femsre/fux010.

View at: Publisher Site: https://academic.oup.com/femsre/article/41/3/276/3089981

PubMed: https://pubmed.ncbi.nlm.nih.gov/28369412/

Europe PMC: https://europepmc.org/article/med/28369412

Mingzhou Guo, Yaojun Peng, Aiai Gao, Chen Du, James G. Herman. Epigenetic heterogeneity in cancer. Biomark Res. 2019; 7: 23. doi: 10.1186/s40364-019-0174-y.

View at: Publisher Site: https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-019-0174-y

PubMed: https://pubmed.ncbi.nlm.nih.gov/31695915/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824025/

Stanta G, Bonin S. Overview on Clinical Relevance of Intra-Tumor Heterogeneity. Front Med (Lausanne). 2018; 5:85. doi: 10.3389/fmed.2018.00085.

View at: Publisher Site: https://www.frontiersin.org/articles/10.3389/fmed.2018.00085/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/29682505/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897590/

Zhang Q, Lou Y, Bai XL, Liang TB. Intratumoral heterogeneity of hepatocellular carcinoma: From single-cell to population-based studies. World J Gastroenterol. 2020; 26(26):3720-36. doi: 10.3748/wjg.v26.i26.3720.

View at: Publisher Site: https://www.wjgnet.com/1007-9327/full/v26/i26/3720.htm

PubMed: https://pubmed.ncbi.nlm.nih.gov/32774053/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383842/

Rübben A, Araujo A. Cancer heterogeneity: converting a limitation into a source of biologic information. J Transl Med. 2017; 15(1):190. doi: 10.1186/s12967-017-1290-9.

View at: Publisher Site: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-017-1290-9

Stanta G, Bonin S. A Practical Approach to Tumor Heterogeneity in Clinical Research and Diagnostics. Pathobiology. 2018; 85(1-2):7-17. doi: 10.1159/000477813.

View at: Publisher Site: https://www.karger.com/Article/FullText/477813

PubMed: https://pubmed.ncbi.nlm.nih.gov/28750401/

Gay L, Baker AM, Graham TA. Tumour Cell Heterogeneity. F1000Res. 2016; 5:F1000 Faculty Rev-238. doi: 10.12688/f1000research.7210.1.

View at: Publisher Site: https://f1000research.com/articles/5-238

PubMed: https://pubmed.ncbi.nlm.nih.gov/26973786/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776671/

Han Y, Jo H, Cho JH, Dhanasekaran DN, Song YS. Resveratrol as a Tumor-Suppressive Nutraceutical Modulating Tumor Microenvironment and Malignant Behaviors of Cancer. Int J Mol Sci. 2019; 20(4): 925. doi: 10.3390/ijms20040925.

View at: Publisher Site: https://www.mdpi.com/1422-0067/20/4/925

PubMed: https://pubmed.ncbi.nlm.nih.gov/30791624/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412705/

Dharmaraja AT. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem. 2017; 60(8):3221-40. doi: 10.1021/acs.jmedchem.6b01243.

View at: Publisher Site: https://pubs.acs.org/doi/10.1021/acs.jmedchem.6b01243

PubMed: https://pubmed.ncbi.nlm.nih.gov/28135088/

Europe PMC: https://europepmc.org/article/med/28135088

Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019; 51(1):27-41. doi: 10.1016/j.immuni.2019.06.025.

View at: Publisher Site: https://www.cell.com/immunity/fulltext/S1074-7613(19)30295-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS107476131930295X%3Fshowall%3Dtrue

PubMed: https://pubmed.ncbi.nlm.nih.gov/31315034/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831096/

Scopus: https://www.sciencedirect.com/science/article/pii/S107476131930295X

Europe PMC: https://europepmc.org/article/med/31315034

Yang L., Lin PC. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin Cancer Biol. 2017; 47:185-95. doi: 10.1016/j.semcancer.2017.08.001.

View at: Publisher Site: Scopus: https://www.sciencedirect.com/science/article/abs/pii/S1044579X17302055?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/28782608/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698110/

Europe PMC: https://europepmc.org/article/med/28782608

Armstrong H, Bording-Jorgensen M, Dijk S, Wine E. The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel). 2018; 10(3):83. doi: 10.3390/cancers10030083.

View at: Publisher Site: https://www.mdpi.com/2072-6694/10/3/83

PubMed: https://pubmed.ncbi.nlm.nih.gov/29558443/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876658/

Johnson CH, Spilker ME, Goetz L, Peterson SN, Siuzdak G. Metabolite and Microbiome Interplay in Cancer Immunotherapy. Cancer Res. 2016; 76(21):6146-52. doi: 10.1158/0008-5472.CAN-16-0309.

View at: Publisher Site: https://cancerres.aacrjournals.org/content/76/21/6146

PubMed: https://pubmed.ncbi.nlm.nih.gov/27729325/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093024/

van Elsland D, Neefjes J. Bacterial infections and cancer. EMBO Rep. 2018; 19(11):e46632. doi: 10.15252/embr.201846632.

View at: Publisher Site: https://www.embopress.org/doi/full/10.15252/embr.201846632

PubMed: https://pubmed.ncbi.nlm.nih.gov/30348892/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216254/

Abd-El-Raouf R, Ouf SA, Gabr MM, Zakaria MM, El-Yasergy KF, Ali-El-Dein B. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming. Sci Rep. 2020 Oct 22; 10(1):18024. doi: 10.1038/s41598-020-74390-5.

View at: Publisher Site: https://www.nature.com/articles/s41598-020-74390-5

Li S, Peppelenbosch MP, Smits R. Bacterial biofilms as a potential contributor to mucinous colorectal cancer formation. Biochim Biophys Acta Rev Cancer. 2019; 1872(1):74-9. doi: 10.1016/j.bbcan.2019.05.009.

View at: Publisher Site: Scopus: https://www.sciencedirect.com/science/article/pii/S0304419X19300320?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/31201828/

Tomkovich S, Jobin C. Microbial networking in cancer: when two toxins collide. Br J Cancer. 2018; 118(11):1407-9. doi: 10.1038/s41416-018-0101-2.

View at: Publisher Site: https://www.nature.com/articles/s41416-018-0101-2

PubMed: https://pubmed.ncbi.nlm.nih.gov/29773837/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988818/

Lang M, Baumgartner M, Rożalska A, Frick A, Riva A, Jarek M, Berry D, Gasche C. Crypt residing bacteria and proximal colonic carcinogenesis in a mouse model of Lynch syndrome. Int J Cancer. 2020; 147(8):2316-26. doi: 10.1002/ijc.33028.

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.33028

Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 2019 Mar; 17(3):156-66. doi: 10.1038/s41579-018-0129-6.

View at: Publisher Site: https://www.nature.com/articles/s41579-018-0129-6

PubMed: https://pubmed.ncbi.nlm.nih.gov/30546113/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589823/

Tomkovich S, Gharaibeh RZ, Dejea CM, Pope JL, Jiang J, Winglee K, Gauthier J, Newsome RC, Yang Y, Fodor AA, Schmittgen TD, Sears CL, Jobin C. Human Colon Mucosal Biofilms and Murine Host Communicate via Altered mRNA and microRNA Expression during Cancer. mSystems. 2020; 5(1):e00451-19. doi: 10.1128/mSystems.00451-19.

View at: Publisher Site: https://msystems.asm.org/content/5/1/e00451-19/article-info

URL: https://www.meta.org/papers/human-colon-mucosal-biofilms-and-murine-host/31937674

Longhi G, van Sinderen D, Ventura M, Turroni F. Microbiota and Cancer: The Emerging Beneficial Role of Bifidobacteria in Cancer Immunotherapy. Front Microbiol. 2020; 11:575072. doi: 10.3389/fmicb.2020.575072.

View at: Publisher Site: https://www.frontiersin.org/articles/10.3389/fmicb.2020.575072/full

PubMed: https://pubmed.ncbi.nlm.nih.gov/33013813/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507897/

Lopetuso LR, Severgnini M, Pecere S, Ponziani FR, Boskoski I, Larghi A, Quaranta G, Masucci L, Ianiro G, Camboni T, Gasbarrini A, Costamagna G, Consolandi C, Cammarota G. Esophageal microbiome signature in patients with Barrett's esophagus and esophageal adenocarcinoma. PLoS One. 2020; 15(5):e0231789. doi: 10.1371/journal.pone.0231789.

View at: Publisher Site: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231789

PubMed: https://pubmed.ncbi.nlm.nih.gov/32369505/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199943/

Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol. 2020; 13:151-85. doi: 10.2147/CEG.S243337.

View at: Publisher Site: https://www.dovepress.com/the-bacterial-microbiota-of-gastrointestinal-cancers-role-in-cancer-pa-peer-reviewed-article-CEG

PubMed: https://pubmed.ncbi.nlm.nih.gov/32440192/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211962/

McNitt DH, Choi SJ, Allen JL, Hames RA, Weed SA, Van De Water L, Berisio R, Lukomski S. Adaptation of the group A Streptococcus adhesin Scl1 to bind fibronectin type III repeats within wound-associated extracellular matrix: implications for cancer therapy. Mol Microbiol. 2019; 112(3):800-19. doi: 10.1111/mmi.14317.

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/full/10.1111/mmi.14317

Saputo S, Faustoferri RC, Quivey RG Jr. A Drug Repositioning Approach Reveals that Streptococcus mutans Is Susceptible to a Diverse Range of Established Antimicrobials and Nonantibiotics. Antimicrob Agents Chemother. 2017; 62(1):e01674-17. doi: 10.1128/AAC.01674-17.

View at: Publisher Site: https://aac.asm.org/content/62/1/e01674-17

Teteneva NA, Mart'yanov SV, Esteban-López M, Kahnt J, Glatter T, Netrusov AI, Plakunov VK, Sourjik V. Multiple Drug-Induced Stress Responses Inhibit Formation of Escherichia coli Biofilms. Appl Environ Microbiol. 2020; 86(21):e01113-20. doi: 10.1128/AEM.01113-20.

View at: Publisher Site: https://aem.asm.org/content/86/21/e01113-20

PubMed: https://pubmed.ncbi.nlm.nih.gov/32826218/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580552/

Yaghoubi A, Khazaei M, Hasanian SM, Avan A, Cho WC, Soleimanpour S. Bacteriotherapy in Breast Cancer. Int J Mol Sci. 2019; 20(23):5880. doi: 10.3390/ijms20235880.

View at: Publisher Site: https://www.mdpi.com/1422-0067/20/23/5880

PubMed: https://pubmed.ncbi.nlm.nih.gov/31771178/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928964/

Duong MT, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019; 51(12):1-15. doi: 10.1038/s12276-019-0297-0.

View at: Publisher Site: https://www.nature.com/articles/s12276-019-0297-0

PubMed: https://pubmed.ncbi.nlm.nih.gov/31827064/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906302/

Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018; 18(12):727-43. doi: 10.1038/s41568-018-0070-z.

View at: Publisher Site: https://www.nature.com/articles/s41568-018-0070-z

PubMed: https://pubmed.ncbi.nlm.nih.gov/30405213/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902869/

Sawant SS, Patil SM, Gupta V, Kunda NK. Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment. Int J Mol Sci. 2020; 21(20):7575. doi: 10.3390/ijms21207575.

View at: Publisher Site: https://www.mdpi.com/1422-0067/21/20/7575

PubMed: https://pubmed.ncbi.nlm.nih.gov/33066447/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589870/

Al-Hilu SA, Al-Shujairi WH. Dual Role of Bacteria in Carcinoma: Stimulation and Inhibition. Int J Microbiol. 2020; 2020:4639761. doi: 10.1155/2020/4639761.

View at: Publisher Site: https://www.hindawi.com/journals/ijmicro/2020/4639761/

PubMed: https://pubmed.ncbi.nlm.nih.gov/32908523/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463420/

Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy - enemies in the past, but allies at present. Infect Agent Cancer. 2018; 13:9. doi: 10.1186/s13027-018-0180-y.

View at: Publisher Site: https://infectagentscancer.biomedcentral.com/articles/10.1186/s13027-018-0180-y

PubMed: https://pubmed.ncbi.nlm.nih.gov/29568324/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856380/

Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017; 15(12):740-55. doi: 10.1038/nrmicro.2017.99.

View at: Publisher Site: https://www.nature.com/articles/nrmicro.2017.99

PubMed: https://pubmed.ncbi.nlm.nih.gov/28944770/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685531/

Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, Lohrasbi V, Mohammadzadeh N, Amiriani T, Krutova M, Amini A, Kouhsari E. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019; 8(6):3167-81. doi: 10.1002/cam4.2148.

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/full/10.1002/cam4.2148

PubMed: https://pubmed.ncbi.nlm.nih.gov/30950210/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558487/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.