THE EFFECTIVENESS OF ORAL SUPEROXIDE DISMUTASE (SOD) ON TOTAL ANTIOXIDANT STATUS, TRANSEPIDERMAL WATER LOSS (TEWL) AND SEBUM CONCENTRATION IN PHOTO AGING SKIN
Article PDF

Keywords

Superoxide Dismutase, TAS, TEWL, Sebum

Abstract views: 34
PDF Downloads: 16

How to Cite

Djawad, K., & Anggraini, D. (2021). THE EFFECTIVENESS OF ORAL SUPEROXIDE DISMUTASE (SOD) ON TOTAL ANTIOXIDANT STATUS, TRANSEPIDERMAL WATER LOSS (TEWL) AND SEBUM CONCENTRATION IN PHOTO AGING SKIN. Medical Science of Ukraine (MSU), 17(1), 47-56. https://doi.org/10.32345/2664-4738.1.2021.06

Abstract

Relevance. Aging is a progressive process of decrease in organs functions and capacity, including the skin. Photoaging is extrinsic aging mainly occurs due to ultraviolet (UV) exposure. The effectiveness of oral SOD for premature aging is still not yet known.

Objective: We aimed to evaluate the effectiveness of this antioxidant on total antioxidant status (TAS), skin hydration (TEWL), and sebum concentration in premature skin aging.

Methods. This study is a clinical trial research design with one group pre-post test. All subjects were exposed to UV for approximately 3-4 hours. All subjects signed informed consent and were interviewed accordingly. Photoaging was diagnosed clinically by three dermatologists according to Glogau type II classification such as dynamic wrinkles, palpable keratosis, visible lentigo senilis, and smiley line. SOD 250 IU was given to all subjects twice daily for 60 days. Laboratory examinations such as TAS, TEWL, and sebum concentration were done pre and post-intervention.

Results. A total of 25 subjects, Fitzpatrick skin type 4 were included in this study. There were 14 males and 11 females with 20 subjects age 30-40 years old and 5 subjects age 25-29 years old. Fourteen (56%) out of 18 subjects from the low TAS group have normal TAS post-treatment with SOD. McNemar test showed a significant increase in TAS value pre and post-treatment with SOD (p<0.05). TEWL measurement on cheek showed 9 out of 10 subjects from the strained group have normal TEWL post-treatment, while all 3 subjects from the critical group have normal TEWL value. Measurement on the forehead showed 7 subjects from the strained group have a normal TEWL. Sebumeter on the forehead showed 17 subjects from dry skin group 14 (56%) subjects have normal skin, 1 (4%) subject becomes oily, and 2 subjects remains dry post-treatment with SOD for 60 days. All subjects with dry skin on the U zone become normal skin post-treatment.

Conclusion. SOD significantly increased TAS value, decreased TEWL, and improvement of skin dryness post-treatment with SOD for 60 days.

https://doi.org/10.32345/2664-4738.1.2021.06
Article PDF

References

Yaar M, Gilchrest B. Aging of Skin. In: Goldsmith L, Katz S, Gilchrest B, Paller A, Leffell D, Wolff K, editors. Fitzpatrick Dermatology in General Medicine. 1. 8th ed. New York: McGraw-Hill; 2012. p. 1213-26.

View in: URL: https://accessmedicine.mhmedical.com/content.aspx?bookid=392&sectionid=41138823

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545-89. DOI: 10.3390/biom5020545

View at: Publisher Site: https://www.mdpi.com/2218-273X/5/2/545

PubMed: https://pubmed.ncbi.nlm.nih.gov/25906193/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496685/

Mera S, Lovell C, Jones RR, Davies J. Elastic fibres in normal and sun‐damaged skin: an immunohistochemical study. British Journal of Dermatology. 1987;117(1):21-7. DOI: 10.1111/j.1365-2133.1987.tb04086.x

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2133.1987.tb04086.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/3651333/

Warren R, Gartstein V, Kligman AM, Montagna W, Allendorf RA, Ridder GM. Age, sunlight, and facial skin: a histologic and quantitative study. Journal of the American Academy of Dermatology. 1991;25(5):751-60. DOI: 10.1016/s0190-9622(08)80964-4

View at: Publisher Site: https://www.jaad.org/article/S0190-9622(08)80964-4/pdf

PubMed: https://pubmed.ncbi.nlm.nih.gov/1802896/

Europe PMC: https://europepmc.org/article/med/1802896

Kelly RI, Pearse R, Bull RH, Leveque J-L, de Rigal J, Mortimer PS. The effects of aging on the cutaneous microvasculature. Journal of the American Academy of Dermatology. 1995;33(5):749-56. DOI: 10.1016/0190-9622(95)91812-4

View at: Publisher Site: https://www.jaad.org/article/0190-9622(95)91812-4/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/7593773/

Europe PMC: https://europepmc.org/article/med/7593773

Ahsanuddin S, Lam M, Baron ED. Skin aging and oxidative stress. 2016. AIMS Molecular Science. 2016; 3(2):187-195. DOI: 10.3934/molsci.2016.2.187

View at: Publisher Site: http://www.aimspress.com/article/10.3934/molsci.2016.2.187

Sroka J, Madeja Z. [Reactive oxygen species in regulation of cell migration. The role of thioredoxin reductase]. Postepy biochemii. 2009;55(2):145-52. [in Polish]

View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/19824470/

Masaki H. Role of antioxidants in the skin: anti-aging effects. Journal of dermatological science. 2010;58(2):85-90. doi: 10.1016/j.jdermsci.2010.03.003

View at: Publisher Site: https://www.jdsjournal.com/article/S0923-1811(10)00078-2/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/20399614/

Europe PMC: https://europepmc.org/article/med/20399614

Matés JM, Sánchez-Jiménez F. Antioxidant enzymes and their implications in pathophysiologic processes. Frontiers in bioscience: a journal and virtual library. 1999;4(4):0339-345. DOI: 10.2741/mates

View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/10077544/

Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences CMLS. 2004;61(2):192-208. DOI: 10.1007/s00018-003-3206-5

View at: Publisher Site: https://link.springer.com/article/10.1007%2Fs00018-003-3206-5

PubMed: https://pubmed.ncbi.nlm.nih.gov/14745498/

Europe PMC: http://europepmc.org/article/MED/14745498

Balsano C, Alisi A. Antioxidant effects of natural bioactive compounds. Current pharmaceutical design. 2009;15(26):3063-73. DOI: 10.2174/138161209789058084

View at: Publisher Site: https://www.eurekaselect.com/69944/article

PubMed: https://pubmed.ncbi.nlm.nih.gov/19754380/

Yasui K, Baba A. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflammation Research. 2006;55(9):359-63. DOI: 10.1007/s00011-006-5195-y

View at: Publisher Site: https://link.springer.com/article/10.1007%2Fs00011-006-5195-y

PubMed: https://pubmed.ncbi.nlm.nih.gov/17122956/

Europe PMC: http://europepmc.org/article/MED/17122956

Corvo ML, Jorge JC, van't Hof R, Cruz MEM, Crommelin DJ, Storm G. Superoxide dismutase entrapped in long-circulating liposomes: formulation design and therapeutic activity in rat adjuvant arthritis. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2002;1564(1):227-36. DOI: 10.1016/s0005-2736(02)00457-1

View at: Publisher Site: https://www.sciencedirect.com/science/article/pii/S0005273602004571?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/12101017/

Europe PMC: http://europepmc.org/article/med/12101017

Akitomo Y, Akamatsu H, Okano Y, Masaki H, Horio T. Effects of UV irradiation on the sebaceous gland and sebum secretion in hamsters. Journal of dermatological science. 2003;31(2):151-9. DOI: 10.1016/s0923-1811(03)00003-3

View at: Publisher Site: https://www.jdsjournal.com/article/S0923-1811(03)00003-3/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/12670726/

Europe PMC: https://europepmc.org/article/med/12670726

Faidati W, Barakbah J. Penilaian status antioksidan total pada penderita kusta di unit rawat jalan penyakit kulit dan kelamin RSUD Dr. Soetomo Surabaya. MDVI. 2001;28(SII):209S-14S.

Fisher GJ, Wang Z, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. New England Journal of Medicine. 1997;337(20):1419-29. DOI: 10.1056/NEJM199711133372003

View at: Publisher Site: https://www.nejm.org/doi/full/10.1056/nejm199711133372003

PubMed: https://pubmed.ncbi.nlm.nih.gov/9358139/

Birkedal-Hansen H, Moore W, Bodden M, Windsor L, Birkedal-Hansen B, DeCarlo A, et al. Matrix metalloproteinases: a review. Critical Reviews in Oral Biology & Medicine. 1993;4(2):197-250. doi: 10.1177/10454411930040020401

View at: Publisher Site: https://journals.sagepub.com/doi/abs/10.1177/10454411930040020401

Publisher Site pdf: https://journals.sagepub.com/doi/pdf/10.1177/10454411930040020401

PubMed: https://pubmed.ncbi.nlm.nih.gov/8435466/

Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. Journal of dermatological science. 2017;85(3):152-61. DOI: 10.1016/j.jdermsci.2016.09.015

View at: Publisher Site: https://www.jdsjournal.com/article/S0923-1811(16)30816-7/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/27720464/

Scopus: https://www.sciencedirect.com/science/article/pii/S0923181116308167

Oikarinen A. Aging of the skin connective tissue: how to measure the biochemical and mechanical properties of aging dermis. Photodermatology, photoimmunology & photomedicine. 1994;10(2):47-52.

View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/8043384/

Semantic Scholar: https://www.semanticscholar.org/paper/Aging-of-the-skin-connective-tissue%3A-how-to-measure-Oikarinen/43b90f22899ad869b5728e36715914da21434a50

Guinot C, J-M Malvy D, Ambroisine L, Latreille J, Mauger E, Tenenhaus M, et al. Relative Contribution of Intrinsic vs Extrinsic Factors to Skin Aging as Determined by a Validated Skin Age Score. Archives of dermatology. 2002;138:1454-60. DOI: 10.1001/archderm.138.11.1454.

View at: Publisher Site: https://jamanetwork.com/journals/jamadermatology/article-abstract/479070

PubMed: https://pubmed.ncbi.nlm.nih.gov/12437451/

Draelos ZK. Cosmetics in Dermatology: Churchill Livingstone. Edinburgh, 1995.

Watson RE, Gibbs NK, Griffiths CE, Sherratt MJ. Damage to skin extracellular matrix induced by UV exposure. Antioxidants & redox signaling. 2014;21(7):1063-77. DOI: 10.1089/ars.2013.5653

View at: Publisher Site: https://www.liebertpub.com/doi/10.1089/ars.2013.5653

PubMed: https://pubmed.ncbi.nlm.nih.gov/24124905/

Europe PMC: https://europepmc.org/article/med/24124905

Chung JH. Photoaging in Asians. Photodermatology, Photoimmunology & Photomedicine. 2003;19(3):109-21. doi: 10.1034/j.1600-0781.2003.00027.x.

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/full/10.1034/j.1600-0781.2003.00027.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/12914595/

Scopus: https://snucm.elsevierpure.com/en/publications/photoaging-in-asians

Europe PMC: https://europepmc.org/article/med/12914595

Petropoulos I, Conconi M, Wang X, Hoenel B, Brégégère Fo, Milner Y, et al. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2000;55(05):B220-B7. doi: 10.1093/gerona/55.5.b220

View at: Publisher Site: https://academic.oup.com/biomedgerontology/article/55/05/B220/2948112

PubMed: https://pubmed.ncbi.nlm.nih.gov/10819308/

Kohen R, Nyska A. Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic pathology. 2002;30(6):620-50. doi: 10.1080/01926230290166724

View at: Publisher Site: https://journals.sagepub.com/doi/10.1080/01926230290166724

PubMed: https://pubmed.ncbi.nlm.nih.gov/12512863/

Europe PMC: https://europepmc.org/article/med/12512863

Toussaint O, Medrano E, Von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Experimental gerontology. 2000;35(8):927-45. DOI: 10.1016/s0531-5565(00)00180-7

View at: Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0531556500001807?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/11121681/

Swindells K, Rhodes L. Influence of oral antioxidants on ultraviolet radiation‐induced skin damage in humans. Photodermatology, photoimmunology & photomedicine. 2004;20(6):297-304. DOI: 10.1111/j.1600-0781.2004.00121.x

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0781.2004.00121.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/15533237/

Fisher GJ, Quan T, Purohit T, Shao Y, Cho MK, He T, et al. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. The American journal of pathology. 2009;174(1):101-14. DOI: 10.2353/ajpath.2009.080599

View at: Publisher Site: https://ajp.amjpathol.org/article/S0002-9440(10)61269-2/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/19116368/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631323/

Fisher GJ, Voorhees JJ, editors. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. Journal of Investigative Dermatology Symposium Proceedings; 1998: Elsevier.

View at: Publisher Site: https://core.ac.uk/download/pdf/82734732.pdf

PubMed: https://pubmed.ncbi.nlm.nih.gov/9732061/

Fisher GJ, Datta SC, Talwar HS, Wang Z-Q, Varani J, Kang S, Voorhees JJ. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature. 1996;379(6563):335. DOI: 10.1038/379335a0.

View at: Publisher Site: https://www.nature.com/articles/379335a0

PubMed: https://pubmed.ncbi.nlm.nih.gov/8552187/

Europe PMC: https://europepmc.org/article/med/8552187

Rocquet C, Bonté F. Molecular aspects of skin ageing: recent data. ACTA Dermatovenerologica alpina panonica et adriatica. 2002;11(3):71-94.

View at: Publisher Site: http://www.acta-apa.org/journals/acta-dermatovenerol-apa/papers/10.15570/archive/2002/3/Rocquet.pdf

ResearchGate: https://www.researchgate.net/publication/281894397_Molecular_aspects_of_skin_ageing_Recent_data

Kangralkar V, Patil SD, Bandivadekar R. Oxidative stress and diabetes: a review. Int J Pharm Appl. 2010;1(1):38-45.

View at: Semantic Scholar: https://www.semanticscholar.org/paper/OXIDATIVE-STRESS-AND-DIABETES%3A-A-REVIEW-Kangralkar-Patil/307ad115a657548765f8ba540f8da6cef755872e

Miller A. Fe superoxide dismutase. In: Messerschmidt A, Huber R, Poulos T, Wieghart K, editors. Handbook of Metalloproteins. Chichester: John Wiley &Sons; 2001. p. 668-82.

View at: Publisher Site: http://www.docme.su/doc/1930200/edited-by-a.-messerschmidt--r.-huber--t.-poulos-and-k.-wi...

Onlinelibrary: https://onlinelibrary.wiley.com/doi/abs/10.1002/aoc.298

Hong-Duk Y, Eun-Ja K, Jung-Hye R, HAH YC, Sa-Ouk K. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochemical Journal. 1996;318(3):889-96. DOI: 10.1042/bj3180889

View at: Publisher Site: https://portlandpress.com/biochemj/article-abstract/318/3/889/32962/A-novel-nickel-containing-superoxide-dismutase?redirectedFrom=fulltext

SemanticScholar: https://pdfs.semanticscholar.org/f45a/e6a08be9c1bffee50c33244229e49e3e1772.pdf

İnal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clinica Chimica Acta. 2001;305(1-2):75-80. doi: 10.1016/s0009-8981(00)00422-8.

View at: Scopus: https://www.sciencedirect.com/science/article/abs/pii/S0009898100004228?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/11249925/

Europe PMC: https://europepmc.org/article/med/11249925

Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim). 2018;12(3):88-93.

View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/29896077/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969776/

Bafana A, Dutt S, Kumar A, Kumar S, Ahuja PS. The basic and applied aspects of superoxide dismutase. Journal of Molecular Catalysis B: Enzymatic. 2011;68(2):129-38. DOI: 10.1016/j.molcatb.2010.11.007

View at: Scopus: https://www.sciencedirect.com/science/article/abs/pii/S1381117710002900?via%3Dihub

Takahashi H, Hashimoto Y, Aoki N, Kinouchi M, Ishida-Yamamoto A, Iizuka H. Copper, zinc-superoxide dismutase protects from ultraviolet B-induced apoptosis of SV40-transformed human keratinocytes: the protection is associated with the increased levels of antioxidant enzymes. Journal of dermatological science. 2000;23(1):12-21. DOI: 10.1016/s0923-1811(99)00060-2

View at: Publisher Site: https://www.jdsjournal.com/article/S0923-1811(99)00060-2/fulltext

PubMed: https://pubmed.ncbi.nlm.nih.gov/10699760/

Filipe P, Emerit I, Vassy J, Rigaut J, Martin E, Freitas J, et al. Epidermal localization and protective effects of topically applied superoxide dismutase. Experimental dermatology. 1997;6(3):116-21. DOI: 10.1111/j.1600-0625.1997.tb00157.x

View at: Publisher Site: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0625.1997.tb00157.x

PubMed: https://pubmed.ncbi.nlm.nih.gov/9226133/

Poljšak B, Dahmane R. Free radicals and extrinsic skin aging. Dermatology research and practice. 2012;2012. DOI: 10.1155/2012/135206

View at: Publisher Site: https://www.hindawi.com/journals/drp/2012/135206/

PubMed: https://pubmed.ncbi.nlm.nih.gov/22505880/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299230/

Urbanska M, Nowak G, Florek E. [Cigarette smoking and its influence on skin aging]. Przeglad lekarski. 2012;69(10):1111-4. [in Polish]

View at: https://pubmed.ncbi.nlm.nih.gov/23421102/#:~:text=Cigarette%20smoke%20causes%20unfavorable%20skin,smoking%2070%20year%20old%20adults.

Europe PMC: https://europepmc.org/article/med/23421102

Yin L, Morita A, Tsuji T. Alterations of extracellular matrix induced by tobacco smoke extract. Arch Dermatol Res. 2000;292(4):188-94. doi: 10.1007/s004030050476

View at: Scopus: https://link.springer.com/article/10.1007/s004030050476

PubMed: https://pubmed.ncbi.nlm.nih.gov/10836612/

Europe PMC: https://europepmc.org/article/med/10836612

Miyachi Y. The cumulative effect of continual oxidative stress to the skin and cutaneous aging. Cutaneous aging. 1988:435-47.

Jackson S. Skin as an organ of protection. In: Dermatology in general medicine. 1993;1:241-53.

View at: https://accessmedicine.mhmedical.com/Content.aspx?bookId=392&sectionId=41138745

https://www.amazon.com/Dermatology-General-Medicine-Thomas-Fitzpatrick/dp/0070212074

Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. The Journal of clinical investigation. 1995;95(5):2281-90. DOI: 10.1172/JCI117919.

View at: Publisher Site: https://www.jci.org/articles/view/117919

PubMed: https://pubmed.ncbi.nlm.nih.gov/7738193/

PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC295841/

Europe PMC: https://europepmc.org/article/med/11913735

Wang YN, Fang H, Wang HM, Chen HC. [Effect of chronic exposure to ultraviolet on skin barrier function]. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical sciences. 2010;39(5):517-22. [in Chinese]

View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/20936728/

Europe PMC: https://europepmc.org/article/med/20936728

Di Cerbo A, Laurino C, Palmieri B, Iannitti T. A dietary supplement improves facial photoaging and skin sebum, hydration and tonicity modulating serum fibronectin, neutrophil elastase 2, hyaluronic acid and carbonylated proteins. Journal of Photochemistry and Photobiology B: Biology. 2015;144:94-103. doi: 10.1016/j.jphotobiol.2014.12.025

View at: Publisher Site: https://www.sciencedirect.com/science/article/pii/S101113441400390X?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/25732262/

Tokudome Y, Takahashi Y. Antioxidants Inhibit Subsequent Lipid Production via Sebaceous Gland Cell Differentiation. J Dermat Cosmetol. 2017;1(3):00015. DOI: 10.15406/jdc.2017.01.00015

View at: Publisher Site: https://medcraveonline.com/JDC/antioxidants-inhibit-subsequent-lipid-production-via-sebaceous-gland-cell-differentiation.html

Garcı́a-González A, Herrera-Abarca J, Ochoa JL. Effect of superoxide dismutase from bovine erythrocytes on different activity parameters in adjuvant-induced arthritis. Archives of medical research. 1999;30(2):132-7. doi: 10.1016/s0188-0128(98)00025-6.

View at: Publisher Site: https://www.sciencedirect.com/science/article/pii/S0188012898000256?via%3Dihub

PubMed: https://pubmed.ncbi.nlm.nih.gov/10372448/

Europe PMC: https://europepmc.org/article/med/10372448

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.