MESENCHYMAL STEM CELLS IN THE COMPLEX TREATMENT OF TRAUMATIC BRAIN INJURY
Article PDF

Keywords

traumatic brain injury, patients, cell therapy, intranasal technique, mechanisms

Abstract views: 80
PDF Downloads: 54

How to Cite

Shanko, Y., Krivenko, S., Goncharov, V., Novitskaya, V., Zamaro, A., Tanin, A., Nekhai, M., Tokalchik, Y., Novikova, L., Kolyadich, Z., & Kulchitsky, V. (2021). MESENCHYMAL STEM CELLS IN THE COMPLEX TREATMENT OF TRAUMATIC BRAIN INJURY. Medical Science of Ukraine (MSU), 17(1), 11-23. https://doi.org/10.32345/2664-4738.1.2021.02

Abstract

Relevance. The problem of effective prevention and treatment of traumatic brain injuries (TBI) of various etiologies has not been resolved in all countries of the world. Primary brain damage from trauma initiates secondary damage to the nervous tissue. As a result, the interaction of brain neural networks is disrupted and the control of somatic and visceral functions of the body is weakened. The article is based on our own clinical observations and comparison of results with literature data and provides a discussion of the prospects for the use of cell technologies in the prevention of fatal disorders of vital functions control in traumatic brain injuries.

Objective. To evaluate the effectiveness of intranasal perineural implantation of mesenchymal stem cells (MSCs) in the complex therapy of patients with TBI.

Materials and methods. The technique intranasal perineural administration of MSCs was used in complex therapy of 15 patients with severe TBI. The patients were 19÷69 years old, 13 men and two women. A cell suspension was isolated from the adipose tissue of the patient's abdominal wall and centrifuged for 10 min at 1500 rpm. The cell pellet was washed in phosphate buffered saline and DMEM. Cells were cultured in plastic culture flasks in a humidified atmosphere with 5% CO2 content. The cell mass was trypsinized according to standard technique and resuspended in physiological saline on the day of implantation. Dynamics of culture growth, pluripotency, phenotyping of MSCs were monitored. MSCs were injected under general anesthesia into the submucosa of the nasal cavity 3-4 times with an interval of 3-7 days, depending on the growth rate of MSCs, in a single dose from 12.0×106 to 35.0×106 cells.

Results. The use of allogeneic and predominantly autologous MSCs of adipose tissue in the complex treatment of patients with severe TBI by intranasal perineural delivery to the area of traumatic brain injury does not cause complications and is a safe technique. 8 patients with severe TBI showed from 4 to 7 points according to the Glasgow Outcome Scale Extended, with an average of 5.4±1.1 points after 6 months. The main result is that complex therapy, including intranasal implantation of MSCs in acute and subacute periods of severe TBI, contributes to the survival of patients and restoration of neurological – including cognitive – functions control.

Conclusions. The effectiveness of intranasal perineural implantation of MSCs in the complex therapy of patients with TBI has been demonstrated. The mechanisms of the beneficial effects of perineural implantation of MSCs in patients with TBI require further research.

https://doi.org/10.32345/2664-4738.1.2021.02
Article PDF

References

Thornhill S., Teasdale G.M., Murray G.D., McEwen J, Roy CW, Penny KI. Disability in young people and adults one year after head injury: prospective cohort study. BMJ. 2000 Jun 17; 320(7250): 1631-5. DOI: https://doi:10.1136/bmj.320.7250.1631

Hyder A.A., Wunderlich C.A., Puvanachandra P., Gururaj G., Kobusingye O.C. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007; 22(5): 341-53. DOI: https://doi:10.3233/NRE-2007-22502

Taylor C.A., Bell J.M., Breiding M.J., Xu L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths - United States, 2007 and 2013. MMWR Surveill Summ. 2017 Mar 17; 66(9): 1-16. DOI: https://doi:10.15585/mmwr.ss6609a1

Heile A.M., Wallrapp C., Klinge P.M., Samii A., Kassem M., Silverberg G., Brinker T. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci. Lett. 2009 Oct 9; 463: 176–81. DOI: https://doi:10.1016/j.neulet.2009.07.071

Chuang T.J., Lin K.C., Chio C.C., Wang C.C., Chang C.P., Kuo J.R. Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J. Trauma Acute Care Surg. 2012 Nov; 73: 1161–7. DOI: https://doi:10.1097/TA.0b013e318265d128

Anbari F., Khalili M.A., Bahrami A.R., Khoradmehr A., Sadeghian F., Fesahat F., Nabi A. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen. Res. 2014 May 1; 9: 919–23. DOI: https://doi:10.4103/1673-5374.133133

Karp J.M., Teo G.S.L. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009 Mar 6; 4:206–16. DOI: https://doi:10.1016/j.stem.2009.02.001

Menge T., Zhao Y., Zhao J., Wataha K., Gerber M., Zhang J., Letourneau P., Redell J., Shen L., Wang J., Peng Z., Xue H., Kozar R., Cox C.S, Khakoo A.Y., Holcomb J.B., Dash P.K., Pati S. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci. Transl. Med. 2012 Nov 21; 4(161): 161ra150. DOI: https://doi:10.1126/scitranslmed.3004660

Zhang Y., Chopp M., Meng Y., Katakowski M., Xin H., Mahmood A., Xiong Y. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J. Neurosurg. 2015 Apr; 122(4): 856-67. DOI: https://doi:10.3171/2014.11.JNS14770

Ma Z.-J., Yang J.-J., Lu Y.-B., Zhao-Yang Liu Z.-Y., Xue-Xi Wang X.-X. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J. Stem Cells. 2020 Aug 26; 12(8): 814-840. DOI: https://doi:10.4252/wjsc.v12.i8.814

Ng S.Y., Lee A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell Neurosci. 2019 Nov 27; 13: 528. DOI: https://doi:10.3389/fncel.2019.00528

Lowry L.E., Herzig M.C., Christy B.A., Schäfer R., Pati S., Cap A.P., Bynum J.A. Neglected No More: Emerging Cellular Therapies in Traumatic Injury. Stem Cell Rev. Rep. 2021 Jan 8; 1-21. DOI: https://doi:10.1007/s12015-020-10086-7

Algattas H., Huang J.H. Traumatic brain injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int. J. Mol. Sci. 2013 Dec 30; 15: 309-41. DOI: https://doi:10.3390/ijms15010309

Prins M., Greco T., Alexander D., Giza C.C. The pathophysiology of traumatic brain injury at a glance. Dis. Model Mech. 2013 Nov; 6(6): 1307-15. DOI: https://doi:10.1242/dmm.011585

Jalloh I., Carpenter K.L.H., Helmy A., Carpenter T.A., Menon D.K., Hutchinson P.J. Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings. Metab. Brain Dis. 2015 Jun; 30: 615-32. DOI: https://doi:10.1007/s11011-014-9628-y

Johnson V.E., Stewart W., Smith D.H. Axonal pathology in traumatic brain injury. Exp. Neurol. 2013 Aug; 246: 35-43. DOI: https://doi:10.1016/j.expneurol.2012.01.013

Werner C. Traumatic Brain Injury. 2017. DOI: http://www.mayfieldclinic.com/PE-TBI.htm

Dardiotis E., Karanikas V., Paterakis K., Fountas K., Hadjigeorgiou G.M. Traumatic brain injury and inflammation: emerging role of innate and adaptive immunity. In: Agrawal A., Editor. Brain Injury – Pathogenesis, Monitoring, Recovery and Management. Rijeka: InTech. 2012: 23-38. DOI: https://doi: 10.5772/27840

Silver J., Miller J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004 Feb; 5(2): 146-56. DOI: https://doi:10.1038/nrn1326

Myer D., Gurkoff G., Lee S., Hovda D., Sofroniew M. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain. 2006 Oct; 129: 2761-72. DOI: https://doi:10.1093/brain/awl165

Maas A.I., Stocchetti N., Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008 Aug; 7(8): 728-41. DOI: https://doi:10.1016/S1474-4422(08)70164-9

Rolls A., Shechter R., Schwartz M. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 2009 Mar; 10: 235-41. DOI: https://doi:10.1038/nrn2591

Lucas S., Rothwell N.J., Gibson R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 2006 Jan; 147: S232-40. DOI: https://doi:10.1038/sj.bjp.0706400

Woodbury D., Schwarz E.J., Prockop D.J., Black I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 2000 Aug; 61: 364-70. DOI: https://doi:10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C

Toma C., Pittenger M.F., Cahill K.S., Byrne B.J., Kessler P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002 Jan; 105(1): 93-8. https://doi:10.1161/hc0102.101442

Horwitz E., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A.; International Society for Cellular Therapy. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005 7(5): 393-5. DOI: https://doi:10.1080/14653240500319234

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop Dj., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006 8(4): 315-7. DOI: https://doi:10.1080/14653240600855905

da Silva Meirelles L., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 2006 Jun 1; 119(Pt 11): 2204-13. DOI: https://doi:10.1242/jcs.02932

Mahmood A., Lu D., Qu C., Goussev A., Chopp M. Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J. Neurosurg. 2006 Feb; 104(2): 272-7. DOI: https://doi:10.3171/jns.2006.104.2.272

Chamberlain G., Fox J., Ashton B., Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007 Nov; 25(11): 2739-49. DOI: https://doi:10.1634/stemcells.2007-0197

Meirelles Lda. S., Fontes A.M., Covas D.T., Caplan A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009 Oct-Dec; 20(5-6): 419-27. DOI: https://doi:10.1016/j.cytogfr.2009.10.002

Walker P.A., Shah S.K., Harting M.T., Cox C.S. Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Dis. Models Mech. 2009 Jan-Feb; 2(1-2): 23-38. DOI: https://doi:10.1242/dmm.001198

Ponte A.L., Marais E., Gallay N., Langonne A., Delorme B., Herault O., Charbord P., Domenech J. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007 Jul; 25(7): 1737-45. DOI: https://doi:10.1634/stemcells.2007-0054

Rüster B., Göttig S., Ludwig R.J., Bistrian R., Müller S., Seifried E., Gille J., Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006 Dec 1; 108(12): 3938-44. DOI: https://doi:10.1182/blood-2006-05-025098

Segers V.F., Van Riet I., Andries L.J., Lemmens K., Demolder M.J., De Becker A.J., Kockx M.M., De Keulenaer G.W. Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am. J. Physiol. Heart Circ. Physiol. 2006 Apr; 290(4): H1370-7. DOI: https://doi:10.1152/ajpheart.00523.2005

Rojas M., Xu J., Woods C.R., Mora A.L., Spears W., Roman J., Brigham K.L. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am. J. Respir. Cell Mol. Biol. 2005 Aug; 33(2): 145-52. DOI: https://doi:10.1165/rcmb.2004-0330OC

Munoz J.R., Stoutenger B.R., Robinson A.P., Spees J.L., Prockop D.J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc. Natl. Acad. Sci. USA. 2005 Dec 13; 102(50): 18171-6. DOI: https://doi:10.1073/pnas.0508945102

Hoogduijn M.J., Popp F., Verbeek R., Masoodi M., Nicolaou A., Baan C., Dahlke M.-H. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int. Immunopharmacol. 2010 Dec; 10(12): 1496-500. DOI: https://doi:10.1016/j.intimp.2010.06.019

Galindo L.T., Filippo T.R., Semedo P., Ariza C.B., Moreira C.M., Camara N.O.S., Porcionatto M.A. Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol. Res. Int. 2011; 2011: 564089. DOI: https://doi:10.1155/2011/564089

Bartholomew A., Sturgeon C., Siatskas M., Ferrer K., McIntosh K., Patil S., Hardy W., Devine S., Ucker D., Deans R., Moseley A., Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002 Jan; 30(1): 42-8. DOI: https://doi:10.1016/S0301-472X(01)00769-X

Di Nicola M., Carlo-Stella C., Magni M., Milanesi M., Longoni P.D., Matteucci P., Grisanti S., Gianni A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002 May 15; 99(10): 3838-43. DOI: https://doi:10.1182/blood.V99.10.3838

Daadi M.M., Li Z., Arac A., Grueter B.G., Sofilos M., Malenka R.C., Wu J.C., Steinberg G.K. Molecular and Magnetic Resonance Imaging of Human Embryonic Stem Cell-Derived Neural Stem Cell Grafts in Ischemic Rat Brain. Molecular Therapy. 2009 Jul; 17(7): 1282-91. DOI: https://doi:10.1038/mt.2009.104

López-Bendito G, Arlotta P. Cell replacement therapies for nervous system regeneration. Dev. neurobiology. 2012 Feb; 72(2): 145-52. DOI: https://doi:10.1002/dneu.20897

Roybon L., Lamas N.J., Garcia A.D., Yang E.J., Sattler R., Lewis V.J., Kim Y.A., Kachel C.A., Rothstein J.D., Przedborski S., Wichterle H., Henderson C.E. Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes. Cell Rep. 2013 Sep 12; 4(5): 1035-48. DOI: https://doi:10.1016/j.celrep.2013.06.021

Barnabe G.F., Schwindt T.T., Calcagnotto M.E., Motta F.L., Martinez G. Jr, de Oliveira A.C., Keim L.M., D'Almeida V., Mendez-Otero R., Mello L.E. Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One. 2009 Apr 16; 4(4): e5222. DOI: https://doi:10.1371/journal.pone.0005222

Zanier E.R., Pischiutta F., Riganti L., Marchesi F., Turola E., Fumagalli S., Perego C., Parotto E., Vinci P., Veglianese P., D'Amico G., Verderio C., De Simoni M.-G. Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics. 2014 Jul; 11(3): 679-95. DOI: https://doi:10.1007/s13311-014-0277-y

Zane B. The Hayflick Limit. The Embryo Project Encyclopedia. 2019. DOI: https://embryo.asu.edu

Giraldi-Guimarães A., de Freitas H.T., Coelho B. de P., Macedo-Ramos H., Mendez-Otero R., Cavalcante L.A., Baetas-da-Cruz W. Bone marrow mononuclear cells and mannose receptor expression in focal cortical ischemia. Brain Res. 2012 May 3; 1452: 173-84. DOI: https://doi:10.1016/j.brainres.2012.03.002

Brenneman M., Sharma S., Harting M., Strong R., Cox C.S. Jr, Aronowski J., Grotta J.C., Savitz S.I. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J. Cereb. Blood Flow Metab. 2010 Jan; 30(1): 140-9. DOI: https://doi:10.1038/jcbfm.2009.198

Bakondi B., Shimada I.S., Peterson B.M., Spees J.L. SDF-1α secreted by human CD133-derived multipotent stromal cells promotes neural progenitor cell survival through CXCR7. Stem Cells Dev. 2011 Jun; 20(6): 1021-9. DOI: https://doi:10.1089/scd.2010.0198

Bao X., Wei J., Feng M., Lu S., Li G., Dou W., Ma W., Ma S., An Y., Qin C., Zhao R.C., Wang R. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res. 2011 Jan 7; 1367: 103-13. DOI: https://doi:10.1016/j.brainres.2010.10.063

Ranganath S.H., Levy O., Inamdar M.S., Karp J.M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012 Mar 2; 10(3): 244-58. DOI: https://doi:10.1016/j.stem.2012.02.005

Andres R.H., Horie N., Slikker W., Keren-Gill H., Zhan K., Sun G., Manley N.C., Pereira M.P., Sheikh L.A., McMillan E.L., Schaar B.T., Svendsen C.N., Bliss T.M., Steinberg G.K. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011 Jun; 134(Pt6): 1777-89. DOI: https://doi:10.1093/brain/awr094

Hawryluk G.W., Mothe A.J., Chamankhah M., Wang J., Tator C., Fehlings M.G. In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev. 2012 Feb 10; 21(3): 432-47. DOI: https://doi:10.1089/scd.2011.0242

Xin H., Li Y., Buller B., Katakowski M., Zhang Y., Wang X., Shang X., Zhang Z.G., Chopp M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012 Jul; 30(7): 1556-64. DOI: https://doi:10.1002/stem.1129

van Velthoven C.T., Kavelaars A., van Bel F., Heijnen C.J. Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr. Res. 2010 Nov; 68(5): 419-22. DOI: https://doi:10.1203/PDR.0b013e3181f1c289

Gardner R.C., Yaffe K. Traumatic brain injury may increase risk of young onset dementia. Ann. Neurol. 2014 Mar; 75(3): 339-41. DOI: https://doi:10.1002/ana.24121

Grigorian A., Gilerovich E., Pavlichenko N., Kruglyakov P., Sokolova I., Polyntsev D. Effect of transplantation of mesenchymal stem cells on neuronal survival and formation of a glial scar in the brain of rats with severe traumatic brain injury. Bull. Exp. Biol. Med. 2011 Feb; 150(4): 551-5. DOI: https://doi:10.1007/s10517-011-1187-1

Connick P., Patani R., Chandran S. Stem cells as a resource for regenerative neurology. Pract. Neurol. 2011 Feb; 11(1): 29-36. DOI: https://doi:10.1136/jnnp.2010.235184

Wilson J.T., Pettigrew L.E., Teasdale G.M. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J. Neurotrauma. 1998 Aug; 15(8): 573-85. DOI: https://doi:10.1089/neu.1998.15.573

Li Z.M., Zhang Z.T., Guo C.J. Geng F.Y., Qiang F., Wang L.X. Autologous bone marrow mononuclear cell implantation for intracerebral hemorrhage – a prospective clinical observation. Clin. Neurol. Neurosurg. 2013 Jan; 115(1): 72-6. DOI: https://doi:10.1016/j.clineuro.2012.04.030

Meltzer C.C., Kondziolka D., Villemagne V.L., Wechsler L., Goldstein S., Thulborn K.R., Gebel J., Elder E.M., DeCesare S., Jacobs A. Serial [18F] fluorodeoxyglucose positron emission tomography after human neuronal implantation for stroke. Neurosurgery. 2001 Sep; 49(3): 586-91; discussion 591-2. DOI: https://doi:10.1097/00006123-200109000-00011

Nelson P.T., Kondziolka D., Wechsler L., Goldstein S., Gebel J., DeCesare S., Elder E.M., Zhang P.J., Jacobs A., McGrogan M., Lee V.M.-Y., Trojanowski J.Q. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol. 2002 Apr; 160(4): 1201-6. DOI: https://doi:10.1016/S0002-9440(10)62546-1

Kondziolka D., Wechsler L., Goldstein S., Meltzer C., Thulborn K.R., Gebel J., Jannetta P., DeCesare S., Elder E.M., McGrogan M., Reitman M.A., Bynum L. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000 Aug 22; 55(4): 565-9. DOI: https://doi:10.1212/wnl.55.4.565

Kondziolka D., Steinberg G.K., Wechsler L., Meltzer C.C., Elder E., Gebel J., Decesare S., Jovin T., Zafonte R., Lebowitz J., Flickinger J.C., Tong D., Marks M.P., Jamieson C., Luu D., Bell-Stephens T., Teraoka J. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J. Neurosurg. 2005 Jul; 103(1): 38-45. DOI: https://doi:10.3171/jns.2005.103.1.0038

Suárez-Monteagudo C., Hernández-Ramírez P., Alvarez-González L., García-Maeso I., de la Cuétara-Bernal K., Castillo-Díaz L., Bringas-Vega M.L., Martínez-Aching G., Morales-Chacón L.M., Báez-Martín M.M., Sánchez-Catasús C., Carballo-Barreda M., Rodríguez-Rojas R., Gómez-Fernández L., Alberti-Amador E., Macías-Abraham C., Balea E.D., Rosales L.C., Del Valle Pérez L., Ferrer B.B.S., González R.M., Bergado J.A. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor. Neurol. Neurosci. 2009; 27(3): 151-61. DOI: https://doi:10.3233/RNN-2009-0483

Li L., Jiang Q., Qu C.S., Ding G.L., Li Q.J., Wang S.Y., Lee J.H., Lu M., Mahmood A., Chopp M. Transplantation of marrow stromal cells restores cerebral blood flow and reduces cerebral atrophy in rats with traumatic brain injury: in vivo MRI study. J. Neurotrauma. 2011 Apr; 28(4): 535-45. DOI: https://doi:10.1089/neu.2010.1619

Rabinovich S.S, Seledtsov V.I., Banul N.V., Poveshchenko O.V., Senyukov V.V., Astrakov S.V., Samarin D.M., Taraban V.Y. Cell therapy of brain stroke. Bull. Exp. Biol. Med. 2005 Jan; 139(1): 126-8. DOI: https://doi:10.1007/s10517-005-0229-y

Schepici G., Silvestro S., Bramanti P., Mazzon E. Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches. Medicina (Kaunas). 2020 Mar 19; 56(3): 137. DOI: https://doi:10.3390/medicina56030137

Barbosa da Fonseca L.M., Gutfilen B., Rosado de Castro P.H. Battistella V., Goldenberg R.C., Kasai-Brunswick T., Chagas C.L., Wajnberg E., Maiolino A., Salles Xavier S., Andre C., Mendez-Otero R., de Freitas G.R. Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp. Neurol. 2010 Jan; 221(1): 122-8. DOI: https://doi:10.1016/j.expneurol.2009.10.010

Rosado-de-Castro P.H., Pimentel-Coelho P.M., Fonseca L.M., Freitas G.R., Mendez-Otero R. The rise of cell therapy trials for stroke: review of published and registered studies. Stem Cells Dev. 2013 Aug 1; 22(15): 2095-111. DOI: https://doi:10.1089/scd.2013.0089

Friedrich M.A., Martins M.P., Araújo M.D., Klamt C., Vedolin L., Garicochea B., Raupp E.F., Sartori El Ammar J., Machado D.C., Costa J.C., Nogueira R.G., Rosado-de-Castro P.H., Mendez-Otero R., Freitas G.R. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012; 21 Suppl. 1: S13-21. DOI: https://doi:10.3727/096368912x612512

Jiang Y., Zhang M.J., Hu B.Y. Specification of functional neurons and glia from human pluripotent stem cells. Protein Cell. 2012 Nov; 3(11): 818-25. DOI: https://doi:10.1007/s13238-012-2086-6

Walczak P., Zhang J., Gilad A.A., Kedziorek D.A., Ruiz-Cabello J., Young R.G., Pittenger M.F., van Zijl P.C., Huang J., Bulte J.W. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008 May; 39(5): 1569-74. DOI: https://doi:10.1161/STROKEAHA.107.502047

England T.J., Abaei M., Auer D.P., Lowe J., Jones D.R., Sare G., Walker M., Bath P.M. Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke. 2012 Feb; 43(2): 405-11. DOI: https://doi:10.1161/STROKEAHA.111.636449

Bang O.Y., Lee J.S., Lee P.H., Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 2005 Jun; 57(6): 874-82. DOI: https://doi:10.1002/ana.20501

Honmou O., Houkin K., Matsunaga T., Niitsu Y., Ishiai S., Onodera R., Waxman S.G., Kocsis J.D. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011 Jun; 134(Pt 6): 1790-807. DOI: https://doi:10.1093/brain/awr063

Bhasin A., Srivastava M.V., Kumaran S.S., Mohanty S., Bhatia R., Bose S., Gaikwad S., Garg A., Airan B. Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc. Dis. Extra. 2011 Jan-Dec; 1(1): 93-104. DOI: https://doi:10.1159/000333381

Kamiya N., Ueda M., Igarashi H., Nishiyama Y., Suda S., Inaba T., Katayama Y. Intra-arterial transplantation of bone marrow mononuclear cells immediately after reperfusion decreases brain injury after focal ischemia in rats. Life Sci. 2008 Sep 12; 83(11-12): 433-7. DOI: https://doi:10.1016/j.lfs.2008.07.018

Vasconcelos-dos-Santos A., Rosado-de-Castro P.H., Lopes de Souza S.A., da Costa Silva J., Ramos A.B., Rodriguez de Freitas G., Barbosa da Fonseca L.M., Gutfilen B., Mendez-Otero R. Intravenous and intra-arterial administration of bone marrow mononuclear cells after focal cerebral ischemia: Is there a difference in biodistribution and efficacy? Stem Cell Res. 2012 Jul; 9(1): 1-8. DOI: https://doi:10.1016/j.scr.2012.02.002

Zhang L., Li Y., Romanko M., Kramer B.C., Gosiewska A., Chopp M., Hong K. Different routes of administration of human umbilical tissue-derived cells improve functional recovery in the rat after focal cerebral ischemia. Brain Res. 2012 Dec 13; 1489: 104-12. DOI: https://doi:10.1016/j.brainres.2012.10.017

Lees J.S., Sena E.S., Egan K.J., Antonic A., Koblar S.A., Howells D.W., Macleod M.R. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int. J. Stroke. 2012 Oct; 7(7): 582-8. DOI: https://doi:10.1111/j.1747-4949.2012.00797.x

Kenmuir C.L., Wechsler L.R. Update on cell therapy for stroke. Stroke Vasc. Neurol. 2017 May 22; 2(2): 59-64. DOI: https://doi:10.1136/svn-2017-000070. eCollection 2017 Jun

Shanko Y., Navitskaya V., Zamaro A., Zafranskaya M., Krivenko S., Koulchitsky S., Takalchik-Stukach Y., Smeyanovich A., Nizheharodova D., Pashkevich S., Dosina M., Denisov A., Kulchitsky V. Somatotopic principle of perineural implantation of stem cells in patients with brain injuries. J. Neurol. Stroke. 2018 Oct; 8(5): 259-61. DOI: https://doi:10.15406/jnsk.2018.08.00321

Bogodvid T., Pashkevich S., Dosina M., Zamaro A., Takalchik Y., Yafarova G., Andrianov V., Denisov A., Loiko D., Gainutdinov K., Kulchitsky V. Effect of intranasal administration of mesenchymal stem cells on the approximate motor activity of rats after simulation of ischemic stroke. Eur. J. Clin. Investig. 2019; 49 (Suppl 1, P146-T): 161. DOI: https://doi:10.1111/eci.13109

Danielyan L., Schäfer R., von Ameln-Mayerhofer A., Buadze M., Geisler J., Klopfer T., Burkhardt U., Proksch B., Verleysdonk S., Ayturan M., Buniatian G.H., Gleiter C.H., Frey W.H. Intranasal delivery of cells to the brain. Eur. J. Cell Biol. 2009 Jun; 88(6): 315-24. DOI: https://doi:10.1016/j.ejcb.2009.02.001

Kulchitsky V., Zamaro A., Shanko Y., Koulchitsky S. Prospects of Perineural Implantation of Stem Cells in Recovery of Neural Network’s Functions in Brain Diseases. Biomed. J. Sci. Tech. Res. 2018 Oct 26; 10(3) 7834-37. DOI: https://doi:10.26717/BJSTR.2018.10.001959

Kulchitsky V., Zamaro A., Shanko Y., Koulchitsky S. Positive and negative aspects of cell technologies in cerebral diseases. J. Neurol. Stroke. 2018 Mar 15; 8(2): 87-88. DOI: https://doi.org:10.15406/jnsk.2018.08.00286

Kjell J., Fischer-Sternjak J., Thompson A.J., Friess C., Sticco M.J., Salinas F., Cox J., Martinelli D.C., Ninkovic J., Franze K., Schiller H.B., Götz M. Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell. 2020 Feb 6; 26(2): 277-293.e8. DOI: https://doi:10.1016/j.stem.2020.01.002

Cox C.S., Hetz R.A., Liao G.P., Aertker B.M., Ewing-Cobbs L., Juranek J., Savitz S.I., Jackson M.L., Romanowska-Pawliczek A.M., Triolo F., Dash P.K., Pedroza C., Lee D.A., Worth L., Aisiku I.P., Choi H.A., Holcomb J.B., Kitagawa R.S. Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells. 2017 Apr; 35(4): 1065-79. DOI: https://doi:10.1002/stem.2538

Wang S., Cheng H., Dai G., Wang X., Hua R., Liu X., Wang P., Chen G., Yue W., An Y. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res. 2013 Sep 26; 1532: 76-84. DOI: https://doi:10.1016/j.brainres.2013.08.001

Liao G.P., Harting M.T., Hetz R.A., Liao G.P., Harting M.T., Hetz R.A., Walker P.A., Shah S.K., Corkin C.J., Hughes T.G., Jimenez F., Kosmach S.C., Day M.-C., Tsao K., Lee D.A., Worth L.L., Baumgartner J.E., Cox C.S. Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in children. Pediatr. Crit. Care Med. 2015 Mar; 16(3): 245-55. DOI: https://doi:10.1097/PCC.0000000000000324

Tian C., Wang X., Wang X., Wang L., Wang X., Wu S., Wan Z. Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp. Clin. Transplant. 2013 Apr; 11(2): 176-81. DOI: https://doi:10.6002/ect.2012.0053

Zhang Z.X., Guan L.X., Zhang K., Zhang Q., Dai L.J. A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy. 2008; 10(2): 134-9. DOI: https://doi:10.1080/14653240701883061

Torrente D., Avila M., Cabezas R., Morales L., Gonzalez J., Samudio I., Barreto G.E. Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum. Exp. Toxicol. 2014 Jul; 33(7): 673-84. DOI: https://doi:10.1177/0960327113509659

Kulchitsky V., Zamaro A., Navitskaya V., Koulchitsky S., Shanko Y. Regulatory Effects of Mesenchymal Stem Cells in Brain. Biomed. J. Sci. Tech. Res. 2018 Nov 14; 11(1): 1-3. DOI: https://doi:10.26717/ BJSTR.2018.11.002039

Najar M., Raicevic G., Fayyad-Kazan H., De Bruyn C., Bron D., Toungouz M., Lagneaux L. Impact of different mesenchymal stromal cell types on T-cell activation, proliferation and migration. Int. Immunopharmacol. 2013 Apr; 15(4): 693-702. DOI: https://doi:10.1016/j.intimp.2013.02.020.

Lenzlinger P.M., Morganti-Kossmann M.-C., Laurer H.L., McIntosh T.K. The duality of the inflammatory response to traumatic brain injury. Mol. Neurobiol. 2001 Aug-Dec; 24(1-3): 169-81. DOI: https://doi:10.1385/MN:24:1-3:169

Kouroupis D., Correa D. Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications. Front. Bioeng. Biotechnol. 2021 Feb 12; 9: 621748. DOI: https://doi:10.3389/fbioe.2021.621748.

Kim H.-J., Lee J.-H., Kim S.-H. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J Neurotrauma. 2010 Jan; 27(1): 131-8. DOI: https://doi:10.1089/neu.2008-0818

Kumagai G., Tsoulfas P., Toh S., McNiece I., Bramlett H.M., Dietrich W.D. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp. Neurol. 2013 Oct; 248: 369-80. DOI: https://doi:10.1016/j.expneurol.2013.06.028

Mead B., Scheven B.A. Mesenchymal stem cell therapy for retinal ganglion cell neuroprotection and axon regeneration. Neural Regen. Res. 2015 Mar; 10(3): 371-3. DOI: https://doi:10.4103/1673-5374.153681

Parr A.M., Tator C.H., Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 2007 Oct; 40(7): 609-19. DOI: https://doi:10.1038/sj.bmt.1705757

Djouad F., Plence P., Bony C., Tropel P., Apparailly F., Sany J., Noël D., Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003 Nov 15; 102(10): 3837-44. DOI: https://doi:10.1182/blood-2003-04-1193

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.