Article PDF


rheumatoid arthritis, treatment, response, prediction

Abstract views: 29
PDF Downloads: 6

How to Cite

Fedkov , D., & Komkina , M. (2020). TREATMENT RESPONSE PREDICTION IN PATIENTS WITH RHEUMATOID ARTHRITIS. Review. Medical Science of Ukraine (MSU), 16(1), 67-76.


Relevance. A variety of targeted therapies for rheumatoid arthritis (RA) treatment exist. Therefore, reliable predictors are needed that could be used to accurately predict the efficacy or inefficacy of these therapies in individual patients. This could allow clinicians to improve diagnosis and prognosis, to make the treatment personalized and to reduce healthcare expenses.

Objectives: to analyze and systemize the predictors of response to treatment in patients with RA.

Materials and Methods. We analyzed the recently discovered predictors of treatment response in RA patients using papers cited on PubMed, Lilacs, and EMBASE databases from Jan 2005 until Jan 2020.  Predictive factors were grouped into four categories: methotrexate (MTX)-treated RA, tumor necrosis factor (TNF)-α inhibitors-treated RA, interleukin (IL)-6 inhibitors-treated RA, and rituximab (RTX)-treated RA.

Results. Based on the results of several studies, predictors of response to methotrexate were high Disease Activity Score (DAS), concentration of myeloid-related proteins 8/14, high P-glycoprotein levels, low serum calprotectin and leptin levels, baseline serum concentration of tumor necrosis factor (TNF)-α, TNF receptor I, interleukin (IL)-1β, soluble CD163, numbers of CD14+highCD16, vascular cell adhesion molecule, lower expression of hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p. A positive response to biological therapy was determined by male gender, younger age, lower health assessment questionnaire, erythrocyte sedimentation rate or C-reactive protein, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, tender joint count (or swollen joint count) scores, absence of comorbidities, baseline albumin, IL-34, IL-1β, D-dimer, fibrinogen, matrix metalloproteinase 3, DAS 28 and Simplified Disease Activity Index (SDAI). The plasma interferon (IFN) activity and the IFN beta/alpha ratio, IL-1Ra level were predictive in TNF antagonist-treated patients. Predictors of response to IL-6 inhibitors were anti–citrullinated protein antibody (ACPA)+, baseline Sharp/van der Heijde score, myeloid soluble intercellular adhesion molecule 1, serum levels of sIL-6R, IL-8, calprotectin, and lymphoid activation and bone remodeling markers. The prediction of the best response for rituximab was determined to be a combination of IL-33, rheumatoid factor or ACPA, IgG, and also lower number of previous biological therapies. Genetic factors, such as single-nucleotide polymorphisms at gene locus rs10919563, rs11541076, rs12083537, rs11265618, and rs1801274, and rs396991 can also be used to predict a response to treatment.

Conclusions. One of the leading problems in the development of predictors remains the collection of high-quality and complete information from a large number of patients. For this, it is necessary to develop an digital program for collecting specific data (depending on the specific disease) and developing new algorithms for predicting the response to treatment.
Article PDF


1. Abildtrup M., Kingsley G. H., Scott D. L. Calprotectin as a Biomarker for Rheumatoid Arthritis: A Systematic Review // J. Rheumat. 2015; 42(5): 760-70. DOI:10.3899/jrheum.140628.
2. Alex P., Szodoray P., Knowlton N. et al. Multiplex serum cytokine monitoring as a prognostic tool in rheumatoid arthritis // Clin. Exp. Rheumatol. 2007; 25(4): 584-92. PubMed PMID: 17888215.
3. Ally M. M. T. M., Hodkinson B., Meyer P. W. A., Musenge E., Tintinger G. R., Tikly M. et al. Circulating anti-citrullinated peptide antibodies, cytokines and genotype as biomarkers of response to disease-modifying antirheumatic drug therapy in early rheumatoid arthritis. // BMC Musculoskelet. Dis. 2015; 16(1): 130-9. DOI: 10.1186/s12891-015-0587-1.
4. Brown P. M., Pratt A. G., Isaacs J. D. Mechanism of action of methotrexate in rheumatoid arthritis and the search for biomarkers // N. Rev. Rheumatol. 2016; 12(12): 731-42. DOI:10.1038/nrrheum.2016.175.
5. Chara L., Sanchez-Atrio A., Perez A. et al. The number of circulating monocytes as biomarkers of the clinical response to methotrexate in untreated patients with rheumatoid arthritis // J. Transl. Med. 2015; 13: 2. DOI: 10.1186/s12967-014-0375-y.
6. Choi I. Y., Gerlag D. M., Herenius M. J., Thurlings R. M., Wijbrandts C. A., Foell D. et al. MRP8/14 serum levels as a strong predictor of response to biological treatments in patients with rheumatoid arthritis // Ann. Rheum. Dis. 2013; 74(3): 499-505. DOI: 10.1136/annrheumdis-2013-203923.
7. Choy E.H., Kavanaugh A.F., Jones S.A. The problem of choice: current biologic agents and future prospects in RA // Nat. Rev. Rheumat. 2013; 9: 154-63. DOI: 10.1038/nrrheum.2013.8.
8. Cui J., Saevarsdottir S., Thomson B., Padyukov L. et al. Rheumatoid Arthritis Risk Allele PTPRC Is Also Associated With Response to Anti–Tumor Necrosis Factor α Therapy // Arthr. Rheum. 2010; 62(7): 1849-61. DOI:10.1002/art.27457.
9. Daga S. et al. Inadequate Clinical Response to Sirukumab, an Anti-IL-6 Monoclonal Antibody, Can be Predicted after a Single Dose of Treatment in Patients with Rheumatoid Arthritis // ACR, 2017. Access mode
10. de Rotte M. C. et al. Methotrexate polyglutamates in erythrocytes are associated with lower disease activity in patients with rheumatoid arthritis // Ann. Rheum. Dis. 2013; Vol. 74: 408-14. DOI: 10.1136/annrheumdis-2013-203725.
11. Dhir V., Sandhu A., Gupta N., Dhawan V., Sharma S., Sharma A. Low Serum Levels of Myeloid Progenitor Inhibitory Factor-1 Predict Good Response to Methotrexate in Rheumatoid Arthritis // ISRN Inflammat. 2013; 1-4. DOI:10.1155/2013/460469.
12. Ding R., Li P., Song D., Zhang X., Bi L. Predictors of response to TNF-α antagonist therapy in Chinese rheumatoid arthritis // Clin. Rheumatol. 2015; 34(7): 1203-10. DOI: 10.1007/s10067-015-2973-3.
13. Filkova M., Jüngel A., Gay R.E., Gay S. MicroRNAs in rheumatoid arthritis: potential role in diagnosis and therapy // BioDrugs. 2012; 26(3):131-41. DOI: 10.2165/11631480-000000000-00000.
14. Forsblad-d’Elia H., Bengtsson K., Kristensen L. E., Jacobsson L. T. H. Drug adherence, response and predictors thereof for tocilizumab in patients with rheumatoid arthritis: results from the Swedish biologics register // Rheumatol. 2014; 54(7): 1186-1193. DOI:10.1093/rheumatology/keu455.
15. Gabay C., Msihid J., Zilberstein M., Paccard C., Lin Y., Graham N. M. et al. Identification of sarilumab pharmacodynamic and predictive markers in patients with inadequate response to TNF inhibition: a biomarker substudy of the phase 3 TARGET study // RMD. 2018; 4(1): 1-11. DOI: 10.1136/rmdopen-2017-000607.
16. Giacomelli R. et al. International consensus: What else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritides, systemic sclerosis, systemic lupus erythematosus, antiphospholipid syndrome and Sjogren's syndrome)?: The unmet needs and the clinical grey zone in autoimmune disease management // Autoimmunity Reviews. 2017; 16(9): 911-24. DOI: 10.1016/j.autrev.2017.07.012 PMID: 28705780.
17. Gottenberg J. E., Courvoisier D. S., Hernandez M. V., Iannone F., Lie E., Canhão H. et al. Brief Report: Association of Rheumatoid Factor and Anti-Citrullinated Protein Antibody Positivity With Better Effectiveness of Abatacept: Results From the Pan-European Registry Analysis // Arthr. Rheumatol. 2016; 68(6): 1346-52. DOI:10.1002/art.39595.
18. Greisen S.R., Moller H.J., Stengaard-Pedersen K. et al. Macrophage activity assessed by soluble CD163 in early rheumatoid arthritis: association with disease activity but different response patterns to synthetic and biologic DMARDs // Clin. Exp. Rheumatol. 2015; 33(4): 498-502. PubMed PMID: 25962601.
19. Guan Y., Zhang H., Quang D., Wang Z., Parker S. C. J., Pappas D. A. et al. Machine learning to predict anti‐TNF drug responses of rheumatoid arthritis patients by integrating clinical and genetic markers // Arthr.Rheumatol. 2019; 71(12): 1987-96. DOI:10.1002/art.41056.
20. Haroon N, Srivastava R, Misra R, Aggarwal A. A novel predictor of clinical response to methotrexate in patients with rheumatoid arthritis: a pilot study of in vitro T cell cytokine suppression // J. Rheumatol. 2008; 35(6): 975-8. PubMed PMID: 18464312.
21. Hetland M. L., Christensen I. J., Tarp U., Dreyer L., Hansen A., Hansen, I. T. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: Results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry // Arthr. Rheumat. 2010; 62(1): 22-32. DOI:10.1002/art.27227.
22. Hirano Y., Hayashi M., Hirabara S., Takahashi N., Kanayama Y., Kaneko A. et al. Predictors of Effectiveness in Golimumab Treatment and Efficacy of Dose-Escalation of Golimumab in Patients with Rheumatoid Arthritis – A Multicenter Registry Study TBCR // Ann. Rheum. Dis. 2015; 74(2): 719.1-719. DOI:10.1136/annrheumdis-2015-eular.1247.
23. Hong H., Yang H., Xia Y. Circulating miR-10a as Predictor of Therapy Response in Rheumatoid Arthritis Patients Treated with Methotrexate // Cur. Pharm. Biotechnol. 2018; 19(1): 79-86. DOI:10.2174/1389201019666180417155140.
24. Hruskova V., Jandova R., Vernerova L.,Mann H., Pecha O., Prajzlerova K. et al. MicroRNA-125b: association with disease activity and the treatment response of patients with early rheumatoid arthritis // Arthr. Res. Ther. 2016; 18: 124. DOI: 10.1186/s13075-016-1023-0.
25. Huang Q.L.,Zhou F.J.,Wu C.B.,Xu C.,Qian W.Y.,Fan D.P. et al. Circulating Biomarkers for Predicting Infliximab Response in Rheumatoid Arthritis: A Systematic Bioinformatics Analysis // Med. Scien. Monit. 2017; Vol. 23:1849-55. DOI:10.12659/msm.900897.
26. Jiménez Morales A., Maldonado-Montoro M., Martínez de la Plata J. E., Pérez Ramírez C., Daddaoua A., Alarcón Payer C. et al. FCGR2A/FCGR3A Gene Polymorphisms and Clinical Variables as Predictors of Response to Tocilizumab and Rituximab in Patients With Rheumatoid Arthritis // J. Clin. Pharmacol. 2018; 00(0): 1-15. DOI:10.1002/jcph.1341.
27. Karpouzas G, Takeuchi T, Thorne C, Sheng S, Li X, Rao R, Fei K, Hsu B. Prediction of Inhibition of Radiographic Progression By Sirukumab, an Anti–IL-6 Cytokine Monoclonal Antibody, in Patients with Active Rheumatoid Arthritis Despite Disease-Modifying Anti-Rheumatic Drug Treatment: Results of a Global, Phase 3 Trial [abstract]. Arthritis Rheumatol. 2016; 68 (suppl 10). Access mode:
28. Kawashiri S., Kawakami A., Iwamoto N., Fujikawa K., Aramaki T., Tamai M. et al. In rheumatoid arthritis patients treated with tocilizumab, the rate of clinical disease activity index (CDAI) remission at 24 weeks is superior in those with higher titers of IgM-rheumatoid factor at baseline // Modern Rheumatol. 2011; 21(4): 370-4.DOI:10.3109/s10165-010-0409-0.
29. Keystone E.C., Curtis J.R., Fleischmann R.M., Furst D.E., Khanna D., Smolen J. al. Rapid Improvement in the Signs and Symptoms of Rheumatoid Arthritis Following Certolizumab Pegol Treatment Predicts Better Longterm Outcomes: Post-hoc Analysis of a Randomized Controlled Trial // J. Rheumatol. 2011; 38(6): 990-6. DOI: 10.3899/jrheum.100935.
30. Kim K.J.,Tagkopoulos I..Application of machine learning in rheumatic disease research // The Korean Journal of Internal Medicine. 2018; 34(4): 708-22. DOI: 10.3904/kjim.2018.349.
31. Kojima T., Yabe Y., Kaneko A., Hirano Y., Ishikawa H., Hayashi M. et al. Monitoring C-reactive protein levels to predict favourable clinical outcomes from tocilizumab treatment in patients with rheumatoid arthritis // Modern Rheumatol. 2013; 23(5): 977-85. DOI: 10.3109/s10165-012-0782-y.
32. Lee H-N., Kim Y-K., Kim G-T. et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio as predictors of 12-week treatment response and drug persistence of anti-tumor necrosis factor-α agents in patients with rheumatoid arthritis: a retrospective chart review analysis // Rheumatol. Inter. 2019; 39(5): 859-68. DOI: 10.1007/s00296-019-04276-x
33. Lezcano-Valverde J.M. et al. Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach // Scientific. Reports. 2017; 7(1): 10189 DOI: 10.1038/s41598-017-10558-w.
34. Ling S., Bluett J., Barton A. Prediction of response to methotrexate in rheumatoid arthritis // Expert Review of Clinical Immunology. 2018; 14(5): 419-29. DOI:10.1080/1744666x.2018.1465409.
35. Maillefert J.-F., Puéchal X., Falgarone G., Lizard G., Ornetti P., Solau E et al. Prediction of response to disease modifying antirheumatic drugs in rheumatoid arthritis // Joint. Bone Spine. 2010; 77(6): 558-63. DOI:10.1016/j.jbspin.2010.02.018.
36. Maldonado-Montoro M., Cañadas-Garre M., González-Utrilla A., Angel Calleja-Hernández M. Influence of IL6R gene polymorphisms in the effectiveness to treatment with tocilizumab in rheumatoid arthritis // The Pharmacogen. J. 2016; 18(1): 167-72. DOI:10.1038/tpj.2016.88.
37. Mavragani C.P., La D.T., Stohl W., Crow M.K. Association of the response to tumor necrosis factor antagonists with plasma type I interferon activity and interferon-beta/alpha ratios in rheumatoid arthritis patients: a post hoc analysis of a predominantly Hispanic cohort // Arthr. Rheum. 2010; 62(2): 392-401. DOI: 10.1002/art.27226.
38. McLeod J. T cell ageing and immune surveillance // Advances in Cell Aging and Gerontology. 2020; Vol.13: 159-72. DOI: 10.1016/S1566-3124(02)13009-4.
39. Nair S. C. et al. A Personalized Approach to Biological Therapy Using Prediction of Clinical Response Based on MRP8/14 Serum Complex Levels in Rheumatoid Arthritis Patients // PLOS ONE. 2016; 11(3): 1-12. DOI:10.1371/journal.pone.0152362.
40. Narváez J., Magallares B., Díaz Torné C., Hernández M. V., Reina D., Corominas H. et al. Predictive factors for induction of remission in patients with active rheumatoid arthritis treated with tocilizumab in clinical practice // Seminars in Arthritis and Rheumatism. 2016; 45(4): 386-90. DOI:10.1016/j.semarthrit.2015.07.001.
41. Nishina N., Kikuchi J., Hashizume M., Yoshimoto K., Kameda H., Takeuchi T. Baseline levels of soluble interleukin-6 receptor predict clinical remission in patients with rheumatoid arthritis treated with tocilizumab: implications for molecular targeted therapy // Ann. Rheum. Dis. 2013; 73(5): 945-7. DOI: 10.1136/annrheumdis-2013-204137.
42. Ogata A., Hirano T., Hishitani Y., Tanaka T. Safety and Efficacy of Tocilizumab for the Treatment of Rheumatoid Arthritis // Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders. 2012; Vol. 5: 27-42. DOI:10.4137/cmamd.s7371.
43. Okano T., Inui K., Tada M., Sugioka Y., Mamoto K., Wakitani S. et al. Levels of interleukin-1 beta can predict response to tocilizumab therapy in rheumatoid arthritis: the PETITE (predictors of effectiveness of tocilizumab therapy) study // Rheumat. International. 2015; 36(3): 349-57. DOI: 10.1007/s00296-015-3379-x.
44. Orange D.E. et al Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine Learning Integration of Synovial Histologic Features and RNA Sequencing Data // Arthr. Rheumatol. 2018; 70(5): 690-701. DOI: 10.1002/art.40428.
45. Patro P.S., Singh A., Misra R., Aggarwal A.Myeloid-related Protein 8/14 Levels in Rheumatoid Arthritis: Marker of Disease Activity and Response to Methotrexate // J. Rheumatol. 2016; 43(4): 731-7. DOI: 10.3899/jrheum.150998.
46. Peres R.S., Liew F.Y., Talbot J. et al. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis // Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(8): 2509-14. DOI: 10.1073/pnas.1424792112.
47. Pers Y.-M., Fortunet C., Constant E., Lambert J., Godfrin-Valnet M., De Jong A. et al. Predictors of response and remission in a large cohort of rheumatoid arthritis patients treated with tocilizumab in clinical practice // Rheumatol. 2013; 53(1): 76-84. DOI:10.1093/rheumatology/ket301.
48. Robinson W.H., Mao R. Biomarkers to guide clinical therapeutics in rheumatology? // Curr. Opin. Rheumatol. 2016; Vol. 28: 168-75. DOI: 10.1097/BOR.0000000000000250.
49. Sanayama Y., Ikeda K., Saito Y., Kagami S., Yamagata M., Furuta S. et al. Prediction of Therapeutic Responses to Tocilizumab in Patients With Rheumatoid Arthritis: Biomarkers Identified by Analysis of Gene Expression in Peripheral Blood Mononuclear Cells Using Genome-Wide DNA Microarray // Arthr.Rheumatol. 2014; 66(6): 1421-31. DOI:10.1002/art.38400.
50. Sellam J.,Marion-Thore S., Dumont F., Jacques S., Garchon H-J., Rouanet al. Use of Whole-Blood Transcriptomic Profiling to Highlight Several Pathophysiologic Pathways Associated With Response to Rituximab in Patients With Rheumatoid Arthritis // Arthr. Rheumatol.2014; 66(8): 2015-25. DOI 10.1002/art.38671.
51. Sellam J., Rivière E., Courties A., Rouzaire P.-O., Tolusso B., Vital E. et al. Serum IL-33, a new marker predicting response to rituximab in rheumatoid arthritis // Arthr. Res. Therap. 2016; 18(1): 294 DOI: 10.1186/s13075-016-1190-z.
52. Singh A.,Patro P.S. Aggarwal A. MicroRNA-132, miR-146a, and miR-155 as potential biomarkers of methotrexate response in patients with rheumatoid arthritis // Clin. Rheumatol. 2019; 38(3):877-84. DOI: 10.1007/s10067-018-4380-z.
53. Smolen J.S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update // Ann.Rheum.Dis. 2017; Vol. 76: 960-77. DOI: 10.1136/annrheumdis-2016-210715.
54. Smolen J. S., van Vollenhoven R. F., Florentinus S., Chen S., Suboticki J. L., Kavanaugh A. Predictors of disease activity and structural progression after treatment with adalimumab plus methotrexate or continued methotrexate monotherapy in patients with early rheumatoid arthritis and suboptimal response to methotrexate // Ann. Rheum. Dis. 2018; 77(11): 1566-72. DOI: 10.1136/annrheumdis-2018-213502.
55. Sode J., Vogel U., Bank S., Andersen P. S., Hetland M. L., Locht H. et al. Confirmation of an IRAK3 polymorphism as a genetic marker predicting response to anti-TNF treatment in rheumatoid arthritis // The Pharmacogenom. J. 2016; 18(1): 81-6. DOI: 10.1038/tpj.2016.66.
56. Vastesaeger N., Kutzbach A.G., Amital H., Pavelka K., Lazaro MA., Moots R.J. et al. Prediction of remission and low disease activity in disease-modifying anti-rheumatic drug-refractory patients with rheumatoid arthritis treated with golimumab // Rheumat. 2016; 55(8): 1466-76, DOI:10.1093/rheumatology/kew179.
57. Vicenç T-S. et al. Renacer study: Assessment of 12-month efficacy and safety of 168 certolizumab PEGol rheumatoid arthritis-treated patients from a Spanish multicenter national database // Modern Rheumatol. 2015; 26(3): 336-41. DOI.:10.3109/14397595.2015.1101200.
58. Weyand C.M., Klimiuk P.A., Goronzy J.J. Heterogeneity of rheumatoid arthritis: from phe- notypes to genotypes // Springer. Semin. Immunopathol. 1998; 20: 5-22. DOI: 10.1007/BF00831996.
59. Yu M. B., Firek A., Langridge W. H. R. Predicting methotrexate resistance in rheumatoid arthritis patients // Inflammopharmacology. 2018; 26(3): 699-708. DOI: 10.1007/s10787-018-0459-z.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.