INFORMATIVE BIOMARKERS IN THE STUDY OF THE PROCESSES OF PROLIFERATION, APOPTOSIS AND AUTOPHAGY IN THE TISSUES OF THE DIGESTIVE SYSTEM IN EXPERIMENTAL METABOLIC SYNDROME. Review
Article PDF

Keywords

proliferation, apoptosis, autophagy, digestive system, diabetes mellitus, metabolic syndrome

Abstract views: 44
PDF Downloads: 28

How to Cite

Smirnov, A. (2019). INFORMATIVE BIOMARKERS IN THE STUDY OF THE PROCESSES OF PROLIFERATION, APOPTOSIS AND AUTOPHAGY IN THE TISSUES OF THE DIGESTIVE SYSTEM IN EXPERIMENTAL METABOLIC SYNDROME. Review. Medical Science of Ukraine (MSU), 15(3-4), 98-104. https://doi.org/10.32345/2664-4738.3-4.2019.15

Abstract

Diabetes mellitus is a widespread disease in the world. Diabetes mellitus type 2 is more and more common in younger people and has many complications. In particular, diabetes causes complications in the gastrointestinal tract. A metabolic syndrome is a state in which metabolic disorders occur. A certain role in the development of metabolic syndrome belongs to the gastrointestinal tract. On the other hand, the presence of metabolic syndrome is a significant risk factor for diseases of the gastrointestinal tract. The development of complications of diabetes and metabolic syndrome is known to be associated with disorders of cell proliferation, apoptosis, and autophagy.

Immunohistochemical methods are widely used in scientific research to evaluate the state of cell proliferation, apoptosis and autophagy in the tissues of the digestive system, in particular in the liver, stomach, pancreas, small intestine and colon. Immunohistological methods provide valuable data on the nature of changes in the processes of cell proliferation, apoptosis and autophagy in the tissues of the digestive system under conditions of metabolic disorders, in particular in diabetes and in metabolic syndrome. Therefore, the use of immunohistochemical methods to determine the proliferative activity by the expression of nuclear antigen Ki-67 and by the expression of nuclear antigen of proliferating cells PCNA , assessment of the state of apoptosis processes by expression of protein Bcl-2 and protein BAX, as well as to determine the nature of the processes of autopsy by expression of Beclin-1 (BECN1) in the tissues of the digestive system in experimental metabolic syndrome and diabetes mellitus type 2 is quite reasonable.

https://doi.org/10.32345/2664-4738.3-4.2019.15
Article PDF

References

1. Abo-Haded H.M., Elkablawy M.A., Al-Johani Z., Al-Ahmadi O., El-Agamy D.S. Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity // PLoS One. 2017; 12 (3). https://doi.org/10.1371/journal.pone.0174295.
2. Ben Q., Xu M., Ning X., Liu J., Hong S., Huang W. et al. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies // Eur J Cancer. 2011; 47 (13): 1928-37. https://doi.org/10.1016/j.ejca.2011.03.003.
3. Boehm E.M., Gildenberg M.S., Washington M.T. The many roles of PCNA in eukaryotic DNA replication // Enzymes. 2016; 39: 231-54. https://doi.org/10.1016/bs.enz.2016.03.003.
4. Careyva B., Stello B. Diabetes Mellitus: Management of Gastrointestinal Complications // Am Fam Physician. 2016; 94 (12): 980-6. PMID: 28075092. URL: https://www.ncbi.nlm.nih.gov/pubmed/28075092
5. Cherkasov V.G., Tymoshenko I.O. [Structural changes of duodenal mucosa enterocytes of rats in burnskin injury under experimental streptozotocin-induced diabetes mellitus] // Reports of Morphology. 2019; 25 (1): 55-61. [in Russian]. https://doi.org/10.31393/morphology-journal-2019-25(1)-08.
6. Dítě P., Přinosilová J., Dovrtělová L., Kupka T., Nechutová H., Kianička B., et al. The role of metabolic syndrome in gastroenterology // Vnitr Lek. 2015; 61 (9); 792-8. URL: https://www.researchgate.net/publication/304848389_The_role_of_metabolic_syndrome_in_gastroenterology
7. Elmore S. Apoptosis: a review of programmed cell death // Toxicol Pathol. 2007; 35 (4): 495-516. https://doi.org/10.1080/01926230701320337.
8. Ergaz Z., Weinstein-Fudim L., Ornoy A. High sucrose low copper diet in pregnant diabetic rats induces transient oxidative stress, hypoxia, and apoptosis in the offspring's liver // Birth Defects Res. 2018; 110 (12): 1001-15. https://doi.org/10.1002/bdr2.1341.
9. Fändriks L. Roles of the gut in the metabolic syndrome: an overview // J Intern Med. 2017; 281 (4): 319-36. https://doi.org/10.1111 / joim.12584.
10. Faried M. A., El-Said El-Mehi A. Aqueous Anise Extract Alleviated the Pancreatic Changes in Streptozotocin-Induced Diabetic Rat Model via Modulation of Hyperglycemia, Oxidative Stress, Apoptosis and Autophagy: A Biochemical, Histological and Immunohistochemical Study // Folia Morphol (Warsz). 2019. https://doi.org/10.5603/FM.a2019.0117
11. Feng M., Li J., Wang J., Ma C., Jiao Y., Wang Y. et al. High glucose increases LPS-induced DC apoptosis through modulation of ERK1/2, AKT and Bax/Bcl-2 // BMC Gastroenterol. 2014; 14: 98. https://doi.org/10.1186/1471-230X-14-98.
12. Ge Z., Ben Q., Qian J. Diabetes mellitus and risk of gastric cancer: A systematic review and meta-analysis of observational studies // Eur J Gastroenterol Hepatol. 2011; 23(12): 1127-35. https://doi.org/10.1097/MEG.0b013e32834b8d73.
13. Gregg E.W., Li Y., Wang J., Burrows N.R., Ali M.K., Rolka D. et al. Changes in diabetes-related complications in the United States, 1990-2010 // N Engl J Med. 2014; 370: 1514-23. https://doi.org/10.1056/NEJMoa1310799.
14. Han F., Xue M., Chang Y., Li X., Yang Y., Sun B. et al. Triptolide Suppresses Glomerular Mesangial Cell Proliferation in Diabetic Nephropathy Is Associated with Inhibition of PDK1/Akt/mTOR Pathway // Int J Biol Sci. 2017; 13 (10): 1266-75. https://doi.org/10.7150 / ijbs.20485.
15. Hassan M., Watari H., AbuAlmaaty A., Ohba Y., Sakuragi N. Apoptosis and molecular targeting therapy in cancer // Biomed Res Int. 2014; 2014: 150845. https://doi.org/10.1155/2014/150845.
16. Ishibashi N., Nishimaki H., Maebayashi T., Hata M., Adachi K4, Sakurai K. et al. Changes in the Ki-67 labeling index between primary breast cancer and metachronous metastatic axillary lymph node: A retrospective observational study // Thorac Cancer. 2019; 10 (1): 96-102. https://doi.org/10.1111/1759-7714.12907.
17. Kang Q., Zou H., Yang X., Cai J.B., Liu L.X., Xie N. et al. Characterization and prognostic significance of mortalin, Bcl-2 and Bax in intrahepatic cholangiocarcinoma // Oncol Lett. 2018; 15 (2): 2161-8. https://doi.org/10.3892/ol.2017.7570.
18. Ke J., Bian X., Liu H., Li B., Huo R. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression // Mol Med. 2019; 25 (1): 54. https://doi.org/10.1186/s10020-019-0122-1.
19. Kornicka K., Śmieszek A., Szłapka-Kosarzewska J., Irwin Houston J.M., Roecken M., Marycz K.Characterization of Apoptosis, Autophagy and Oxidative Stress in Pancreatic Islets Cells and Intestinal Epithelial Cells Isolated from Equine Metabolic Syndrome (EMS) Horses // Int J Mol Sci. 2018; 19 (10). https://doi.org/10.3390/ijms19103068.
20. Kowalska E., Bartnicki F., Fujisawa R. Inhibition of DNA replication by an anti-PCNA aptamer/PCNA complex // Nucleic Acids Res. 2018; 46 (1): 25-41. https://doi.org/10.1093/nar/gkx1184.
21. Kurniawan A.H., Suwandi B.H., Kholili U. Diabetic Gastroenteropathy: A Complication of Diabetes Mellitus // Acta Med Indones. 2019; 51 (3): 263-71. URL: https://www.ncbi.nlm.nih.gov/pubmed/31699951
22. Kylarová D., Vrchovecký J., Holinka M., Erdösová B. The occurrence of c-myc, p53 and Bcl-2 family proteins in the early phase of development of duodenal epithelium // Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2004; 148 (2): 229-32. URL: https://www.ncbi.nlm.nih.gov/pubmed/15744383
23. Li H.H., Qi L.N., Ma L., Chen Z.S., Xiang B.D., Li L.Q. Effect of KI-67 positive cellular index on prognosis after hepatectomy in Barcelona Clinic Liver Cancer stage A and B hepatocellular carcinoma with microvascular invasion // Onco Targets Ther. 2018; 11: 4747-54. https://doi.org/10.2147/OTT.S165244.
24. Liu H., Bai M., Tan B., Xu K., Yu R., Huang R. et al. Influence of supplemented coated-cysteamine on morphology, apoptosis and oxidative stress status of gastrointestinal tract // BMC Vet Res. 2019; 15 (1): Article: 328. https://doi.org/10.1186/s12917-019-2076-5.
25. Lu E.M., Ratnayake J., Rich A.M. Assessment of proliferating cell nuclear antigen (PCNA) expression at the invading front of oral squamous cell carcinoma // BMC Oral Health. 2019; 19 (1): Article 233. https://doi.org/10.1186/s12903-019-0928-9.
26. McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome // Clin Dermatol. 2018; 36 (1): 14-20. https://doi.org/10.1016 / j.clindermatol.2017.09.004.
27. Meldgaard T., Keller J., Olesen A. E., Olesen S.S., Krogh K., Borre M. et al. Pathophysiology and management of diabetic gastroenteropathy // Therap Adv Gastroenterol. 2019: Article 1756284819852047. https://doi.org/10.1177/1756284819852047.
28. Menon M.B., Dhamija S. Beclin 1 Phosphorylation – At the Center of Autophagy Regulation // Front Cell Dev Biol. 2018; 6 (137). https://doi.org/10.3389/fcell.2018.00137.
29. Tahergorabi Z., Moodi M., Zardast M. Metabolic Syndrome and the Risk of Gastrointestinal Cancer: a Case-Control Study // Asian Pac J Cancer Prev. 2018; 19 (8): 2205-10. https://doi.org/10.22034/APJCP.2018.19.8.2205.
30. Miao Z.F., Xu H., Xu Y.Y., Wang Z.N., Zhao T.T., Song Y.X. et al. Diabetes mellitus and the risk of gastric cancer: A meta-analysis of cohort studies // Oncotarget. 2017; 8 (27): 44881-92. https://doi.org/10.18632/oncotarget.16487.
31. Novaleski C.K., Carter B.D., Sivasankar M.P., Ridner S.H., Dietrich M.S., Rousseau B. Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death // J Speech Lang Hear Res. 2017; 60 (5): 1264-72. https://doi.org/10.1044/2016_JSLHR-S-16-0326.
32. O'Hara R.E., Arsenault M.G., Esparza Gonzalez B.P., Patriquen A., Hartwig S. Three Optimized Methods for In Situ Quantification of Progenitor Cell Proliferation in Embryonic Kidneys Using BrdU, EdU, and PCNA // Can J Kidney Health Dis. 2019; 6: 1-13. https://doi.org/10.1177/2054358119871936.
33. Chavali P., Uppin M.S., Uppin S.G., Challa S. Meningiomas: Objective assessment of proliferative indices by immunohistochemistry and automated counting method // Neurol India. 2017; 65 (6): 1345-9. https://doi.org/10.4103/0028-3886.217934.
34. Parafati M., Lascala A., Morittu V.M., Trimboli F., Rizzuto A., Brunelli E. et al. Bergamot Polyphenol Fraction Prevents Nonalcoholic Fatty Liver Disease via Stimulation of Lipophagy in Cafeteria Diet-Induced Rat Model of Metabolic Syndrome // J Nutr Biochem. 2015; 26 (9): 938-48. https://doi.org/10.1016/j.jnutbio.2015.03.008.
35. Pryczynicz A., Gryko M., Niewiarowska K., Cepowicz D., Ustymowicz M., Kemona A1 et al. Bax protein may influence the invasion of colorectal cancer // World J Gastroenterol. 2014; 20 (5): 1305-10. https://doi.org/10.3748/wjg.v20.i5.1305.
36. Ren H.B., Yu T., Liu C., Li Y.Q. Diabetes mellitus and increased risk of biliary tract cancer: Systematic review and meta-analysis // Cancer Causes Control. 2011; 22: 837-47. https://doi.org/10.1007 / s10552-011-9754-3.
37. Robin A.Y., Iyer S., Birkinshaw R.W., Sandow J., Wardak A., Luo C.S. et al. Ensemble Properties of Bax Determine Its Function // Structure. 2018; 26 (10): 1346-59. https://doi.org/10.1016/j.str.2018.07.006.
38. Rył A., Rotter I., Kram A., Teresiński L., Słojewski M., Dołęgowska B. et al. Apoptosis and proliferation of the prostate cells in men with benign prostatic hyperplasia and concomitant metabolic disorders // Histol Histopathol. 2018; 33 (4): 389-97. https://doi.org/10.14670 / HH-11-934.
39. Sanchez A.A., Yamanaka S. Rethinking differentiation: stem cells, regeneration, and plasticity // Cell. 2014; 157 (1): 110-9. https://doi.org/10.1016/j.cell.2014.02.041.
40. Sandikci M., Karagenc L. Yildiz M. Changes in the Pancreas in Experimental Diabetes and the Effect of Lycopene on These Changes: Proliferating, Apoptotic, and Estrogen Receptor α Positive Cells // Gastrointestinal Biology. 2017; 300: 2000-7. https://doi.org/10.1002/ar.23641
41. Sukhotnik I., Nissimov N., Ben Shahar Y., Moati D., Bitterman N., Pollak Y. et al. Fenofibrate reduces intestinal damage and improves intestinal recovery following intestinal ischemia-reperfusion injury in a rat // Pediatr Surg Int. 2016; 32 (12): 1193-200. PMID: 27651374. https://doi.org/10.1007/s00383-016-3979-x.
42. Turati F., Talamini R., Pelucchi C., Polesel J., Franceschi S., Crispo A. et al. Metabolic syndrome and hepatocellular carcinoma risk // Br J Cancer. 2013; 108 (1): 222-8. https://doi.org/10.1038/bjc.2012.492.
43. Turkmen K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse // Int Urol Nephrol. 2017; 49 (5): 837-44. https://doi.org/10.1007/s11255-016-1488-4.
44. Sun X., Paul D. Kaufman Ki-67: more than a proliferation marker // Chromosoma. 2018; 127 (2): 175-86. https://doi.org/10.1007/s00412-018-0659-8.
45. Zhao X., Feng P., He W., Du X., Chen C., Suo L. The Prevention and Inhibition Effect of Anthocyanins on Colorectal Cancer // Curr Pharm Des. 2019 Dec 11. https://doi.org/10.2174/1381612825666191212105145.
46. Yongli Z., Yandong L, Jianyun Z., Kaige L., Hongmei Z. Detecting of gastric cancer by Bcl-2 and Ki67 // Int J Clin Exp Pathol. 2015; 8 (6). 7287-90. URL: https://www.ncbi.nlm.nih.gov/pubmed/26261629.
47. Zheng Y., Ley S.H., Hu F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications // Nat Rev Endocrinol. 2018; 14 (2): 88-98. https://doi.org/10.1038/nrendo.2017.151.
48. Zini E., Ferro S., Lunardi F., Zanetti R., Heller R.S., Coppola L.M. et al. Exocrine Pancreas in Cats With Diabetes Mellitus // Vet Pathol. 2016; 53 (1): 145-52. https://doi.org/10.1177/0300985815603434.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.