Article PDF


alpha herpesviruses, natural killers, natural killer T-lymphocytes, Toll-like type 3 receptors

Abstract views: 157
PDF Downloads: 173

How to Cite



Relevance. The study of the mechanisms of immune surveillance over latent alpha herpesvirus in the sensory nerve ganglia is an important task of clinical immunology, since the data obtained during such studies may help to develop effective approaches to immunotherapy of recurrent and/or severe forms of herpes infections by restoring lost immune control over latent pathogens.

Objective: to conduct a systematic review of the results of studies devoted to the study of mechanisms of intraganglionar and intraneuronal protection over latent alpha herpesvirus in sensory nerve ganglia, to develop a modern concept of immune surveillance in human alpha herpesvirus infections.

Methods. Review of scientific publications in the international electronic science databases PubMed, Embase and Scopus was conducted on the keywords «alpha herpesviruses», «Toll-like receptor type 3», «natural killers», «natural killer T-cells», «intraganglionar immunity», «intraneuronal immunity» for the full time available (1972-2014).

Results. The article presents modern data on interferon-dependent mechanisms of control of latent alpha herpesvirus in sensory nerve ganglia. The system of the intraganglionar control presented by resident natural killers, natural killer T-lymphocytes and cytotoxic CD8+ T-cells that are part of the satellite cells of the nerve node, and the system of intraneuronal defense contained in the centripetal fibers and presented by cascade system TLR-3 , the activation of which promote the production of interferons type I. Genetic or acquired abnormalities in intraganglionar and intraneuronal immunity systems are the cause of the development of recurrent and/or severe forms of infections caused by alpha herpesviruses in humans. Preparations of natural and recombinant alpha interferons and interferonogens are potentially useful agents in the target immunotherapy of disorders in intraganglionar and intraneuronal immunity in immunocompromised patients with severe forms of alpha herpesvirus infections.

Conclusions. In the human body there are highly organized intraganglionar and intraneirononal immune control systems for latent alpha herpesviruses. The activity of these systems ensures the long stay of the virus in a latent state in the sensory nerve ganglia, and the disturbanses of the implementation of such mechanisms is responsible for reactivation of the virus from the latent state with subsequent damage to the skin, mucous membranes and/or the central nervous system.
Article PDF


Мальцев Д.В. Дефіцит природних кілерних Т-клітин // Український медичний часопис. 2015. № 1 (105). С. 65-70.

Мальцев Д.В., Євтушенко С.К., Горбенко В.Ю. Клініка, діагностика і лікування VZV-васкулопатій церебральних артерій // Міжнародний неврологічний журнал. 2018. № 4. [очікує опублікування].

Мальцев Д.В., Недопако Я.Я. Дефіцит природних кілерів: гетерогенність, клініка, діагностика, лікування, клінічні приклади // Український медичний часопис. 2013. № 2 (94). С. 129-142.

Мальцев Д.В., Соколова Л.І., Горбенко В.Ю. Клінічний випадок попереково-крижового мієліту HSV2-етіології у пацієнта з вибірковим дефіцитом природних кілерів // Український неврологічний журнал. 2018. № 3. [очікує опублікування].

Adler H., Beland J.L., Del-Pan N.C., Kobzik L. et al. In the absence of T cells, natural killer cells protect from mortality due to HSV-1 encephalitis // J. Neuroimmunol. 1999. Vol. 93 (1-2). P. 208-213.

Ali M.A., Li Q., Fischer E.R. et al. The insulin degrading enzyme binding domain of varicella-zoster virus (VZV) glycoprotein E is important for cell-to-cell spread and VZV infectivity, while a glycoprotein I binding domain is essential for infection // Virology. 2009. Vol. 386 (2). P. 270-229.

Arvin A.M., Kushner J.H., Feldman S. et al. Human leukocyte interferon for the treatment of varicella in children with cancer // N. Eng. J. Med. 1982. Vol. 306 (13). P. 761-765.

Backström E., Chambers B.J., Kristensson K., Ljunggren H.G. Direct NK cell-mediated lysis of syngenic dorsal root ganglia neurons in vitro // J. Immunol. 2000. Vol. 165 (9). P. 4895-4900.

Bastian F.O., Rabson A.S., Yee C.L., Tralka T.S. Herpesvirus hominis: isolation from human trigeminal ganglion // Science. 1972. Vol. 178 (4058). P. 306-307.

Casanova J.L., Tardieu M., Abel L. Genetic predisposition to herpetic meningo-encephalitis in children // Bull Acad Natl Med. 2010. Vol. 194 (6). P. 915-922.

Casrouge A., Zhang S.Y., Eidenschenk C. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency // Science. 2006. Vol. 314 (5797). P. 308-312. DOI: 10.1126/science.1128346

Frederick W.R., Epstein J.S., Gelmann E.P. et al. Viral infections and cell-mediated immunity in immunodeficient homosexual men with Kaposi's sarcoma treated with human lymphoblastoid interferon // J. Infect. Dis. 1985. Vol. 152 (1). P. 162-170.

Gowrishankar K., Steain M., Cunningham A.L. et al. Characterization of the host immune response in human Ganglia after herpes zoster // J. Virol. 2010. Vol. 84 (17). P. 8861-8870. doi: 10.1128/JVI.01020-10.

Grubor-Bauk B., Simmons A., Mayrhofer G., Speck P.G. Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR // J. Immunol. 2003. Vol. 170 (3). P. 1430-1434.

Guo Y., Audry M., Ciancanelli M. et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity // J. Exp. Med. 2011. Vol. 208 (10). P. 2083-2098.

Herman M., Ciancanelli M., Ou Y.H. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood // J. Exp. Med. 2012. Vol. 209 (9). P. 1567-1582. doi: 10.1084/jem.20111316.

Kaner R.J., Baird A., Mansukhani A. et al. Fibroblast growth factor receptor is a portal of cellular entry for herpes simplex virus type 1 // Science. 1990. Vol. 248 (4961). P. 1410-1413.

Kelly A.P., Schooley R.T., Rubin R.H., Hirsch M.S. Effect of interferon alpha on natural killer cell cytotoxicity in kidney transplant recipients // Clin. Immunol. Immunopathol. 1984. Vol. 32 (1). P. 20-28.

Liu Y., Wang J., Li S. Clinical trial of recombinant alpha-2a interferon in the treatment of herpes zoster // Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1998. Vol. 20 (4). P. 264-266.

Maayan C., Nimrod A., Morag A., Becker Y. et al. Herpes simplex virus-1 and varicella virus infections in familial dysautonomia patients // J. Med. Virol. 1998. Vol. 54 (3). P. 158-161.

Melo M.B., Kasperkovitz P., Cerny A. et al. UNC93B1 mediates host resistance to infection with Toxoplasma gondii // PLoS Pathog. 2010. Vol. 6 (8). e1001071. doi: 10.1371/journal.ppat.1001071.

Mendelson J., Clecner B., Eiley S. Effect of recombinant interferon alpha 2 on clinical course of first episode genital herpes infection and subsequent recurrences // Genitourin Med. 1986. Vol. 62 (2). P. 97-101.

Merigan T.C., Rand K.H, Pollard R.B. et al. Human leukocyte interferon for the treatment of herpes zoster in patients with cancer // N. Engl. J. Med. 1978. Vol. 298 (18). P. 981-987.

Pérez de Diego R., Sancho-Shimizu V., Lorenzo L. et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis // Immunity. 2010. Vol. 33(3). P. 400-411. doi: 10.1016/j.immuni.2010.08.014.

Reichelt M., Zerboni L., Arvin A.M. Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia // J. Virol. 2008. Vol. 82 (8). P. 3971-3983. doi: 10.1128/JVI.02592-07.

Richter E.R., Dias J.K., Gilbert J.E. 2nd, Atherton S.S. Distribution of herpes simplex virus type 1 and varicella zoster virus in ganglia of the human head and neck // J. Infect. Dis. 2009. Vol. 200 (12). P. 1901-1906. doi: 10.1086/648474.

Sancho-Shimizu V., Pérez de Diego R., Lorenzo L. et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficienc // J. Clin. Invest. 2011. Vol. 121 (12). P. 4889-4902. doi: 10.1172/JCI59259.

Steain M., Sutherland J.P., Rodriguez M. et al. Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia // J. Virol. 2014. Vol. 88 (5). P. 2704-2716. doi: 10.1128/JVI.03445-13.

Steiner I., Kennedy P.G., Pachner A.R. The neurotropic herpes viruses: herpes simplex and varicella-zoster // Lancet Neurol. 2007. Vol. 6 (11). P. 1015-1028. doi: 10.1016/S1474-4422(07)70267-3

Willmann O., Ahmad-Nejad P., Neumaier M. et al. Toll-like receptor 3 immune deficiency may be causative for HSV-2-associated mollaret meningitis // Eur. Neurol. 2010. Vol. 63 (4). P. 249-251. doi: 10.1159/000287585.

Winston D.J., Eron L.J., Ho M., Pazin G., Kessler H., Pottage J.C., Gallagher J., Sartiano G., Ho W.G., Champlin R.E. Recombinant interferon alpha-2a for treatment of herpes zoster in immunosuppressed patients with cancer // Am. J. Med. 1988. Vol. 85 (2). P. 147-151.

Yang C.A., Raftery M.J., Hamann L. et al. Association of TLR3-hyporesponsiveness and functional TLR3 L412F polymorphism with recurrent herpes labialis // Hum. Immunol. 2012. Vol. 73 (8). P. 844-851. doi: 10.1016/j.humimm.2012.04.008.

Zhang S.Y., Jouanguy E., Ugolini S. et al. TLR3 deficiency in patients with herpes simplex encephalitis // Science. 2007. Vol. 317 (5844). P. 1522-1527. doi: 10.1126/science.1139522

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.